You are given an integer array?height?of length?n. There are?n?vertical lines drawn such that the two endpoints of the?ith?line are?(i, 0)?and?(i, height[i]).
Find two lines that together with the x-axis form a container, such that the container contains the most water.
Return?the maximum amount of water a container can store.
Notice?that you may not slant the container.
Example 1:
Input: height = [1,8,6,2,5,4,8,3,7]
Output: 49
Explanation: The above vertical lines are represented by array [1,8,6,2,5,4,8,3,7]. In this case, the max area of water (blue section) the container can contain is 49.
Example 2:
Input: height = [1,1]
Output: 1
Constraints:
2 <= n <= 10^5
0 <= height[i] <= 10^4
?解题思路:
一维数组的坐标变换 i, j
- O(n^2) 枚举:left bar x, right bar y, (x-y)*height_diff
- O(n) 左右边界 i, j 向中间收敛
方法一:
class Solution {
public int maxArea(int[] height) {
int max = 0;
for (int i = 0; i < height.length - 1; i++) {
for (int j = i + 1; j < height.length; j++) {
int area = (j-i) * Math.min(height[i], height[j]);
max = Math.max(max, area);
}
}
return max;
}
}
方法二:?
class Solution {
public int maxArea(int[] height) {
int max = 0;
for (int i = 0, j = height.length - 1; i < j; ) {
int minHeight = height[i] < height[j] ? height[i++] : height[j--];
int area = (j - i + 1) * minHeight;
max = Math.max(max, area);
}
return max;
}
}