随机森林(Random Forest)是一种集成学习方法,通过组合多个决策树来提高模型的性能和鲁棒性。随机森林在每个决策树的训练过程中引入了随机性,包括对样本和特征的随机选择,以提高模型的泛化能力。以下是随机森林的基本原理和使用方法:
随机森林的使用方法与决策树类似,使用 RandomForestClassifier
进行分类,使用 RandomForestRegressor
进行回归。以下是一个简单的示例:
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, classification_report
# 加载数据集
iris = load_iris()
X = iris.data
y = iris.target
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 创建随机森林模型
model = RandomForestClassifier(n_estimators=100, random_state=42) # 设置100个决策树
# 训练模型
model.fit(X_train, y_train)
# 预测
y_pred = model.predict(X_test)
# 评估模型性能
accuracy = accuracy_score(y_test, y_pred)
report = classification_report(y_test, y_pred)
print(f'Accuracy: {accuracy}')
print(f'Classification Report:\n{report}')
在这个示例中,n_estimators
参数设置了随机森林中决策树的数量。你可以根据需要调整其他参数,如 max_depth
、min_samples_split
等,以优化模型性能。详细的参数说明可以在官方文档中找到。