《向量数据库指南》——性能持续突破!火山引擎ByteHouse上线向量检索能力

发布时间:2024年01月19日

随着LLM技术应用及落地,数据库需要提高向量分析以及AI支持能力,向量数据库及向量检索等能力“异军突起”,迎来业界持续不断关注。简单来说,向量检索技术以及向量数据库能为 LLM 提供外置的记忆单元,通过提供与问题及历史答案相关联的内容,协助 LLM 返回更准确的答案。

不仅仅是LLM,向量检索与OLAP引擎也早有渊源。作为一种用于数据分析的软件,OLAP能够快速、高效处理大量数据,并提供多维度的分析功能,而向量检索则能帮助OLAP引擎进一步提升对非结构化数据的分析和检索能力。

近期,火山引擎云原生数据仓库ByteHouse推出高性能向量检索功能,通过支持多种向量检索算法以及高效的执行链路,可以支撑极大规模向量检索场景,并达到毫秒级的查询延迟。

ByteHouse团队早已关注并研究向量检索技术。据ByteHouse技术专家介绍,“当前向量数据库的发展主要是两种思路,一种是建设一个专用的向量数据库,基于Vector-centric 的思路来设计向量数据及索引的存储与资源管理策略,查询定式简单,支持数据类型有限;另一种是基于现有数据库扩展向量检索能力,在已有数据管理机制以及查询执行链路中去添加向量索引维护与查询执行逻辑。目前,两种思路互相借鉴,向完备数据库功能支持+高性能向量检索的方式发展。”

ByteHouse来源于ClickHouse,但ClickHouse存在向量索引重复读取,相似度计算冗余等问题,对于延迟要求低、并发需求高的向量检索场景可用性较弱。

基于以上的分析,ByteHouse 在向量检索能力上进行全面创新。 首先,基于 vector-centric 的思路,ByteHouse 重新构建了高效的向量检索执行链路,结合索引缓存、存储层过滤等机制,使得性能实现进一步突破。另外,为了应对不同使用场景,ByteHouse 支持了 HNSW、Flat、IVFFlat、IVFPQ 等多种常见向量索引算法。此外,新引入的向量索引

文章来源:https://blog.csdn.net/qinglingye/article/details/135694193
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。