1. 创建虚拟环境
conda create --name opencompass --clone=/root/share/conda_envs/internlm-base
source activate opencompass
git clone https://github.com/open-compass/opencompass
cd opencompass
pip install -e .
2. 数据集准备
# 解压评测数据集到 data/ 处
cp /share/temp/datasets/OpenCompassData-core-20231110.zip /root/opencompass/
unzip OpenCompassData-core-20231110.zip
3. 查看支持的数据集和模型
# 列出所有跟 internlm 及 ceval 相关的配置
python tools/list_configs.py internlm ceval
? ? ? ? 评测不同的模型主要是设置正确的参数。可以通过命令行的形式一个一个指定,也可以通过config文件实现。本文选择了config文件的形式,首先创建configs/eval_internlm2_chat.py:
from mmengine.config import read_base
from opencompass.models import HuggingFaceCausalLM
from opencompass.partitioners import NaivePartitioner
from opencompass.runners import LocalRunner
from opencompass.tasks import OpenICLEvalTask, OpenICLInferTask
with read_base():
# choose a list of datasets
from .datasets.ceval.ceval_gen_5f30c7 import ceval_datasets
datasets = [*ceval_datasets]
_meta_template = dict(
round=[
dict(role='HUMAN', begin='[UNUSED_TOKEN_146]user\n', end='[UNUSED_TOKEN_145]\n'),
dict(role='SYSTEM', begin='[UNUSED_TOKEN_146]system\n', end='[UNUSED_TOKEN_145]\n'),
dict(role='BOT', begin='[UNUSED_TOKEN_146]assistant\n', end='[UNUSED_TOKEN_145]\n', generate=True),
],
eos_token_id=92542
)
models = [
dict(
type=HuggingFaceCausalLM,
abbr='internlm2-chat-7b',
path="/share/model_repos/internlm2-chat-7b",
tokenizer_path='/share/model_repos/internlm2-chat-7b',
model_kwargs=dict(
trust_remote_code=True,
device_map='auto',
),
tokenizer_kwargs=dict(
padding_side='left',
truncation_side='left',
trust_remote_code=True,
),
max_out_len=100,
max_seq_len=2048,
batch_size=128,
meta_template=_meta_template,
run_cfg=dict(num_gpus=1, num_procs=1),
end_str='[UNUSED_TOKEN_145]',
)
]
infer = dict(
partitioner=dict(type=NaivePartitioner),
runner=dict(
type=LocalRunner,
max_num_workers=2,
task=dict(type=OpenICLInferTask)),
)
eval = dict(
partitioner=dict(type=NaivePartitioner),
runner=dict(
type=LocalRunner,
max_num_workers=2,
task=dict(type=OpenICLEvalTask)),
)
测试结果:
部分结果: