java并发编程十五 ReentrantReadWriteLock和StampedLock介绍

发布时间:2023年12月30日

读写锁 ReentrantReadWriteLock

当读操作远远高于写操作时,这时候使用 读写锁 让 读-读 可以并发,提高性能。 类似于数据库中的 select …from … lock in share mode 提供一个 数据容器类 内部分别使用读锁保护数据的 read() 方法,写锁保护数据的 write() 方法

class DataContainer {
    private Object data;
    private ReentrantReadWriteLock rw = new ReentrantReadWriteLock();
    private ReentrantReadWriteLock.ReadLock r = rw.readLock();
    private ReentrantReadWriteLock.WriteLock w = rw.writeLock();
    public Object read() {
        log.debug("获取读锁...");
        r.lock();
        try {
            log.debug("读取");
            sleep(1);
            return data;
        } finally {
            log.debug("释放读锁...");
            r.unlock();
        }
    }
    public void write() {
        log.debug("获取写锁...");
        w.lock();
        try {
            log.debug("写入");
            sleep(1);
        } finally {
            log.debug("释放写锁...");
            w.unlock();
        }
    }
}

测试 读锁-读锁 可以并发

DataContainer dataContainer = new DataContainer();
new Thread(() -> {
 dataContainer.read();
}, "t1").start();
new Thread(() -> {
 dataContainer.read();
}, "t2").start();

输出结果,从这里可以看到 Thread-0 锁定期间,Thread-1 的读操作不受影响

14:05:14.341 c.DataContainer [t2] - 获取读锁... 
14:05:14.341 c.DataContainer [t1] - 获取读锁... 
14:05:14.345 c.DataContainer [t1] - 读取
14:05:14.345 c.DataContainer [t2] - 读取
14:05:15.365 c.DataContainer [t2] - 释放读锁... 
14:05:15.386 c.DataContainer [t1] - 释放读锁...

测试 读锁-写锁 相互阻塞

DataContainer dataContainer = new DataContainer();
new Thread(() -> {
 dataContainer.read();
}, "t1").start();
Thread.sleep(100);
new Thread(() -> {
 dataContainer.write();
}, "t2").start();

输出结果

14:04:21.838 c.DataContainer [t1] - 获取读锁... 
14:04:21.838 c.DataContainer [t2] - 获取写锁... 
14:04:21.841 c.DataContainer [t2] - 写入
14:04:22.843 c.DataContainer [t2] - 释放写锁... 
14:04:22.843 c.DataContainer [t1] - 读取
14:04:23.843 c.DataContainer [t1] - 释放读锁... 

注意事项

  • 读锁不支持条件变量
  • 重入时升级不支持:即持有读锁的情况下去获取写锁,会导致获取写锁永久等待
r.lock();
try {
 // ...
 w.lock();
 try {
 // ...
 } finally{
 w.unlock();
 }
} finally{
 r.unlock();
}
  • 重入时降级支持:即持有写锁的情况下去获取读锁
class CachedData {
    Object data;
    // 是否有效,如果失效,需要重新计算 data
    volatile boolean cacheValid;
    final ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
    void processCachedData() {
        rwl.readLock().lock();
        if (!cacheValid) {
            // 获取写锁前必须释放读锁
            rwl.readLock().unlock();
            rwl.writeLock().lock();
            try {
                // 判断是否有其它线程已经获取了写锁、更新了缓存, 避免重复更新
                if (!cacheValid) {
                    data = ...
                    cacheValid = true;
                }
                // 降级为读锁, 释放写锁, 这样能够让其它线程读取缓存
                rwl.readLock().lock();
            } finally {
                rwl.writeLock().unlock();
            }
        }
        // 自己用完数据, 释放读锁 
        try {
            use(data);
        } finally {
            rwl.readLock().unlock();
        }
    }
}

StampedLock

该类自 JDK 8 加入,是为了进一步优化读性能,它的特点是在使用读锁、写锁时都必须配合【戳】使用
加解读锁

long stamp = lock.readLock();
lock.unlockRead(stamp);

加解写锁

long stamp = lock.writeLock();
lock.unlockWrite(stamp);

乐观读,StampedLock 支持 tryOptimisticRead() 方法(乐观读),读取完毕后需要做一次 戳校验 如果校验通过,表示这期间确实没有写操作,数据可以安全使用,如果校验没通过,需要重新获取读锁,保证数据安全。

long stamp = lock.tryOptimisticRead();
// 验戳
if(!lock.validate(stamp)){
 // 锁升级
}

提供一个 数据容器类 内部分别使用读锁保护数据的 read() 方法,写锁保护数据的 write() 方法

class DataContainerStamped {
    private int data;
    private final StampedLock lock = new StampedLock();
    public DataContainerStamped(int data) {
        this.data = data;
    }
    public int read(int readTime) {
        long stamp = lock.tryOptimisticRead();
        log.debug("optimistic read locking...{}", stamp);
        sleep(readTime);
        if (lock.validate(stamp)) {
            log.debug("read finish...{}, data:{}", stamp, data);
            return data;
        }
        // 锁升级 - 读锁
        log.debug("updating to read lock... {}", stamp);
        try {
            stamp = lock.readLock();
            log.debug("read lock {}", stamp);
            sleep(readTime);
            log.debug("read finish...{}, data:{}", stamp, data);
            return data;
        } finally {
            log.debug("read unlock {}", stamp);
            lock.unlockRead(stamp);
        }
    }
    public void write(int newData) {
        long stamp = lock.writeLock();
        log.debug("write lock {}", stamp);
        try {
            sleep(2);
            this.data = newData;
        } finally {
            log.debug("write unlock {}", stamp);
            lock.unlockWrite(stamp);
        }
    }
}

测试 读-读 可以优化

public static void main(String[] args) {
    DataContainerStamped dataContainer = new DataContainerStamped(1);
    new Thread(() -> {
        dataContainer.read(1);
    }, "t1").start();
    sleep(0.5);
    new Thread(() -> {
        dataContainer.read(0);
    }, "t2").start();
}

输出结果,可以看到实际没有加读锁

15:58:50.217 c.DataContainerStamped [t1] - optimistic read locking...256 
15:58:50.717 c.DataContainerStamped [t2] - optimistic read locking...256 
15:58:50.717 c.DataContainerStamped [t2] - read finish...256, data:1 
15:58:51.220 c.DataContainerStamped [t1] - read finish...256, data:1 

测试 读-写 时优化读补加读锁

public static void main(String[] args) {
 DataContainerStamped dataContainer = new DataContainerStamped(1);
 new Thread(() -> {
 dataContainer.read(1);
 }, "t1").start();
 sleep(0.5);
 new Thread(() -> {
 dataContainer.write(100);
 }, "t2").start();
}

输出结果

输出结果
15:57:00.219 c.DataContainerStamped [t1] - optimistic read locking...256 
15:57:00.717 c.DataContainerStamped [t2] - write lock 384 
15:57:01.225 c.DataContainerStamped [t1] - updating to read lock... 256 
15:57:02.719 c.DataContainerStamped [t2] - write unlock 384 
15:57:02.719 c.DataContainerStamped [t1] - read lock 513 
15:57:03.719 c.DataContainerStamped [t1] - read finish...513, data:1000 
15:57:03.719 c.DataContainerStamped [t1] - read unlock 513
文章来源:https://blog.csdn.net/studycodeday/article/details/135302194
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。