VIT用于图像分类 学习笔记(附代码)

发布时间:2024年01月05日

论文地址:https://arxiv.org/abs/2010.11929

代码地址:https://github.com/bubbliiiing/classification-pytorch

1.是什么?

Vision Transformer(VIT)是一种基于Transformer架构的图像分类模型。它将图像分割成一系列的图像块,并将每个图像块作为输入序列传递给Transformer模型。VIT通过自注意力机制来捕捉图像中的全局上下文信息,并使用多层感知机(MLP)来进行特征提取和分类。

VIT的核心思想是将图像转换为序列数据,这使得模型能够利用Transformer的强大表达能力来处理图像。通过将图像分割成图像块,并将它们展平为序列,VIT能够在不依赖传统卷积神经网络的情况下实现图像分类任务。

2.为什么?

从2020年,transformer开始在CV领域大放异彩:图像分类(ViT, DeiT),目标检测(DETR,Deformable DETR),语义分割(SETR,MedT),图像生成(GANsformer)等。而从深度学习暴发以来,CNN一直是CV领域的主流模型,而且取得了很好的效果,相比之下transformer却独霸NLP领域,transformer在CV领域的探索正是研究界想把transformer在NLP领域的成功借鉴到CV领域。对于图像问题,卷积具有天然的先天优势(inductive bias):平移等价性(translation equivariance)和局部性(locality)。而transformer虽然不并具备这些优势,但是transformer的核心self-attention的优势不像卷积那样有固定且有限的感受野,self-attention操作可以获得long-range信息(相比之下CNN要通过不断堆积Conv layers来获取更大的感受野),但训练的难度就比CNN要稍大一些。

ViT(vision transformer)是Google在2020年提出的直接将transformer应用在图像分类的模型,后面很多的工作都是基于ViT进行改进的。这篇论文也是受到其启发,尝试将Transformer应用到CV领域通过这篇文章的实验,给出的最佳模型在ImageNet1K上能够达到88.55%的准确率(先在Google自家的JFT数据集上进行了预训练),说明Transformer在CV领域确实是有效的,而且效果还挺惊人。

3.怎么样?

3.1网络结构

与寻常的分类网络类似,整个Vision Transformer可以分为两部分,一部分是特征提取部分,另一部分是分类部分。

在特征提取部分,VIT所做的工作是特征提取。特征提取部分在图片中的对应区域是Patch+Position Embedding和Transformer Encoder。Patch+Position Embedding的作用主要是对输入进来的图片进行分块处理,每隔一定的区域大小划分图片块。然后将划分后的图片块组合成序列。在获得序列信息后,传入Transformer Encoder进行特征提取,这是Transformer特有的Multi-head Self-attention结构,通过自注意力机制,关注每个图片块的重要程度。

在分类部分,VIT所做的工作是利用提取到的特征进行分类。在进行特征提取的时候,我们会在图片序列中添加上Cls Token,该Token会作为一个单位的序列信息一起进行特征提取,提取的过程中,该Cls Token会与其它的特征进行特征交互,融合其它图片序列的特征。最终,我们利用Multi-head Self-attention结构提取特征后的Cls Token进行全连接分类。

3.2特征提取部分介绍

3.2.1Patch

Patch的作用主要是对输入进来的图片进行分块处理,每隔一定的区域大小划分图片块。然后将划分后的图片块组合成序列

该部分首先对输入进来的图片进行分块处理,处理方式其实很简单,使用的是现成的卷积。也就是说,不是把图片分割,是做了一次简单的卷积,可以理解为初步特征提取,或者说是映射。

由于卷积使用的是滑动窗口的思想,我们只需要设定特定的步长,就可以输入进来的图片进行分块处理了。在VIT中,我们常设置这个卷积的卷积核大小为16x16,步长也为16x16,此时卷积就会每隔16个像素点进行一次特征提取,由于卷积核大小为16x16,两个图片区域的特征提取过程就不会有重叠。当我们输入的图片是224, 224, 3的时候,我们可以获得一个14, 14, 768的特征层。

在代码实现中,直接通过一个卷积层来实现。 以ViT-B/16为例,直接使用一个卷积核大小为16x16,步距为16,卷积核个数为768的卷积来实现。通过卷积[224, 224, 3] -> [14, 14, 768],然后把H以及W两个维度展平即可[14, 14, 768] -> [196, 768],此时正好变成了一个二维矩阵,正是Transformer想要的。
?

3.2.2Position Embedding

Position Embedding的作用主要是对组合序列加上[class]token以及Position Embedding

在原论文中,作者说参考BERT,在刚刚得到的一堆tokens中插入一个专门用于分类的[class]token,这个[class]token是一个可训练的参数,数据格式和其他token一样都是一个向量,以ViT-B/16为例,就是一个长度为768的向量,与之前从图片中生成的tokens拼接在一起,Cat([1, 768], [196, 768]) -> [197, 768]。然后关于Position Embedding就是之前Transformer中讲到的Positional Encoding,这里的Position Embedding采用的是一个可训练的参数(1D Pos. Emb.),是直接叠加在tokens上的(add),所以shape要一样。以ViT-B/16为例,刚刚拼接[class]token后shape是[197, 768],那么这里的Position Embedding的shape也是[197, 768]。

对于Position Embedding作者也有做一系列对比试验,在源码中默认使用的是1D Pos. Emb.,对比不使用Position Embedding准确率提升了大概3个点,和2D Pos. Emb.比起来没太大差别。

3.2.3Transformer Encoder

Transformer Encoder其实就是重复堆叠Encoder Block L次,下图是太阳花的小绿豆绘制的Encoder Block,主要由以下几部分组成:

  1. Layer Norm,这种Normalization方法主要是针对NLP领域提出的,这里是对每个token进行Norm处理,之前也有讲过Layer Norm不懂的可以参考链接
  2. Multi-Head Attention,看懂Self-attention结构,其实看懂下面这个动图就可以了,动图中存在一个序列的三个单位输入,每一个序列单位的输入都可以通过三个处理(比如全连接)获得Query、Key、Value,Query是查询向量、Key是键向量、Value值向量。
  1. Dropout/DropPath,在原论文的代码中是直接使用的Dropout层,在但rwightman实现的代码中使用的是DropPath(stochastic depth),可能后者会更好一点。
  2. MLP Block,如图右侧所示,就是全连接+GELU激活函数+Dropout组成也非常简单,需要注意的是第一个全连接层会把输入节点个数翻4倍[197, 768] -> [197, 3072],第二个全连接层会还原回原节点个数[197, 3072] -> [197, 768]
    ?

3.3 分类部分

上面通过Transformer Encoder后输出的shape和输入的shape是保持不变的,以ViT-B/16为例,输入的是[197, 768]输出的还是[197, 768]。注意,在Transformer Encoder后其实还有一个Layer Norm没有画出来,后面有我自己画的ViT的模型可以看到详细结构。这里我们只是需要分类的信息,所以我们只需要提取出[class]token生成的对应结果就行,即[197, 768]中抽取出[class]token对应的[1, 768]。接着我们通过MLP Head得到我们最终的分类结果。MLP Head原论文中说在训练ImageNet21K时是由Linear+tanh激活函数+Linear组成。但是迁移到ImageNet1K上或者你自己的数据上时,只用一个Linear即可。

?3.4别人画的网络结构图

?

3.5代码实现

Patch+Position Embedding

class PatchEmbed(nn.Module):
    def __init__(self, input_shape=[224, 224], patch_size=16, in_chans=3, num_features=768, norm_layer=None, flatten=True):
        super().__init__()
        self.num_patches    = (input_shape[0] // patch_size) * (input_shape[1] // patch_size)
        self.flatten        = flatten

        self.proj = nn.Conv2d(in_chans, num_features, kernel_size=patch_size, stride=patch_size)
        self.norm = norm_layer(num_features) if norm_layer else nn.Identity()

    def forward(self, x):
        x = self.proj(x)
        if self.flatten:
            x = x.flatten(2).transpose(1, 2)  # BCHW -> BNC
        x = self.norm(x)
        return x

class VisionTransformer(nn.Module):
    def __init__(
            self, input_shape=[224, 224], patch_size=16, in_chans=3, num_classes=1000, num_features=768,
            depth=12, num_heads=12, mlp_ratio=4., qkv_bias=True, drop_rate=0.1, attn_drop_rate=0.1, drop_path_rate=0.1,
            norm_layer=partial(nn.LayerNorm, eps=1e-6), act_layer=GELU
        ):
        super().__init__()
        #-----------------------------------------------#
        #   224, 224, 3 -> 196, 768
        #-----------------------------------------------#
        self.patch_embed    = PatchEmbed(input_shape=input_shape, patch_size=patch_size, in_chans=in_chans, num_features=num_features)
        num_patches         = (224 // patch_size) * (224 // patch_size)
        self.num_features   = num_features
        self.new_feature_shape = [int(input_shape[0] // patch_size), int(input_shape[1] // patch_size)]
        self.old_feature_shape = [int(224 // patch_size), int(224 // patch_size)]

        #--------------------------------------------------------------------------------------------------------------------#
        #   classtoken部分是transformer的分类特征。用于堆叠到序列化后的图片特征中,作为一个单位的序列特征进行特征提取。
        #
        #   在利用步长为16x16的卷积将输入图片划分成14x14的部分后,将14x14部分的特征平铺,一幅图片会存在序列长度为196的特征。
        #   此时生成一个classtoken,将classtoken堆叠到序列长度为196的特征上,获得一个序列长度为197的特征。
        #   在特征提取的过程中,classtoken会与图片特征进行特征的交互。最终分类时,我们取出classtoken的特征,利用全连接分类。
        #--------------------------------------------------------------------------------------------------------------------#
        #   196, 768 -> 197, 768
        self.cls_token      = nn.Parameter(torch.zeros(1, 1, num_features))
        #--------------------------------------------------------------------------------------------------------------------#
        #   为网络提取到的特征添加上位置信息。
        #   以输入图片为224, 224, 3为例,我们获得的序列化后的图片特征为196, 768。加上classtoken后就是197, 768
        #   此时生成的pos_Embedding的shape也为197, 768,代表每一个特征的位置信息。
        #--------------------------------------------------------------------------------------------------------------------#
        #   197, 768 -> 197, 768
        self.pos_embed      = nn.Parameter(torch.zeros(1, num_patches + 1, num_features))

    def forward_features(self, x):
        x = self.patch_embed(x)
        cls_token = self.cls_token.expand(x.shape[0], -1, -1) 
        x = torch.cat((cls_token, x), dim=1)
        
        cls_token_pe = self.pos_embed[:, 0:1, :]
        img_token_pe = self.pos_embed[:, 1: , :]

        img_token_pe = img_token_pe.view(1, *self.old_feature_shape, -1).permute(0, 3, 1, 2)
        img_token_pe = F.interpolate(img_token_pe, size=self.new_feature_shape, mode='bicubic', align_corners=False)
        img_token_pe = img_token_pe.permute(0, 2, 3, 1).flatten(1, 2)
        pos_embed = torch.cat([cls_token_pe, img_token_pe], dim=1)

        x = self.pos_drop(x + pos_embed)

TransformerBlock?

class Mlp(nn.Module):
    """ MLP as used in Vision Transformer, MLP-Mixer and related networks
    """
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=GELU, drop=0.):
        super().__init__()
        out_features    = out_features or in_features
        hidden_features = hidden_features or in_features
        drop_probs      = (drop, drop)

        self.fc1    = nn.Linear(in_features, hidden_features)
        self.act    = act_layer()
        self.drop1  = nn.Dropout(drop_probs[0])
        self.fc2    = nn.Linear(hidden_features, out_features)
        self.drop2  = nn.Dropout(drop_probs[1])

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop1(x)
        x = self.fc2(x)
        x = self.drop2(x)
        return x

class Block(nn.Module):
    def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0.,
                 drop_path=0., act_layer=GELU, norm_layer=nn.LayerNorm):
        super().__init__()
        self.norm1      = norm_layer(dim)
        self.attn       = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop)
        self.norm2      = norm_layer(dim)
        self.mlp        = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=drop)
        self.drop_path  = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        
    def forward(self, x):
        x = x + self.drop_path(self.attn(self.norm1(x)))
        x = x + self.drop_path(self.mlp(self.norm2(x)))
        return x

VIT

整个VIT模型由一个Patch+Position Embedding加上多个TransformerBlock组成。典型的TransforerBlock的数量为12个。?

class VisionTransformer(nn.Module):
    def __init__(
            self, input_shape=[224, 224], patch_size=16, in_chans=3, num_classes=1000, num_features=768,
            depth=12, num_heads=12, mlp_ratio=4., qkv_bias=True, drop_rate=0.1, attn_drop_rate=0.1, drop_path_rate=0.1,
            norm_layer=partial(nn.LayerNorm, eps=1e-6), act_layer=GELU
        ):
        super().__init__()
        #-----------------------------------------------#
        #   224, 224, 3 -> 196, 768
        #-----------------------------------------------#
        self.patch_embed    = PatchEmbed(input_shape=input_shape, patch_size=patch_size, in_chans=in_chans, num_features=num_features)
        num_patches         = (224 // patch_size) * (224 // patch_size)
        self.num_features   = num_features
        self.new_feature_shape = [int(input_shape[0] // patch_size), int(input_shape[1] // patch_size)]
        self.old_feature_shape = [int(224 // patch_size), int(224 // patch_size)]

        #--------------------------------------------------------------------------------------------------------------------#
        #   classtoken部分是transformer的分类特征。用于堆叠到序列化后的图片特征中,作为一个单位的序列特征进行特征提取。
        #
        #   在利用步长为16x16的卷积将输入图片划分成14x14的部分后,将14x14部分的特征平铺,一幅图片会存在序列长度为196的特征。
        #   此时生成一个classtoken,将classtoken堆叠到序列长度为196的特征上,获得一个序列长度为197的特征。
        #   在特征提取的过程中,classtoken会与图片特征进行特征的交互。最终分类时,我们取出classtoken的特征,利用全连接分类。
        #--------------------------------------------------------------------------------------------------------------------#
        #   196, 768 -> 197, 768
        self.cls_token      = nn.Parameter(torch.zeros(1, 1, num_features))
        #--------------------------------------------------------------------------------------------------------------------#
        #   为网络提取到的特征添加上位置信息。
        #   以输入图片为224, 224, 3为例,我们获得的序列化后的图片特征为196, 768。加上classtoken后就是197, 768
        #   此时生成的pos_Embedding的shape也为197, 768,代表每一个特征的位置信息。
        #--------------------------------------------------------------------------------------------------------------------#
        #   197, 768 -> 197, 768
        self.pos_embed      = nn.Parameter(torch.zeros(1, num_patches + 1, num_features))
        self.pos_drop       = nn.Dropout(p=drop_rate)

        #-----------------------------------------------#
        #   197, 768 -> 197, 768  12次
        #-----------------------------------------------#
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]
        self.blocks = nn.Sequential(
            *[
                Block(
                    dim         = num_features, 
                    num_heads   = num_heads, 
                    mlp_ratio   = mlp_ratio, 
                    qkv_bias    = qkv_bias, 
                    drop        = drop_rate,
                    attn_drop   = attn_drop_rate, 
                    drop_path   = dpr[i], 
                    norm_layer  = norm_layer, 
                    act_layer   = act_layer
                )for i in range(depth)
            ]
        )
        self.norm = norm_layer(num_features)
        self.head = nn.Linear(num_features, num_classes) if num_classes > 0 else nn.Identity()

    def forward_features(self, x):
        x = self.patch_embed(x)
        cls_token = self.cls_token.expand(x.shape[0], -1, -1) 
        x = torch.cat((cls_token, x), dim=1)
        
        cls_token_pe = self.pos_embed[:, 0:1, :]
        img_token_pe = self.pos_embed[:, 1: , :]

        img_token_pe = img_token_pe.view(1, *self.old_feature_shape, -1).permute(0, 3, 1, 2)
        img_token_pe = F.interpolate(img_token_pe, size=self.new_feature_shape, mode='bicubic', align_corners=False)
        img_token_pe = img_token_pe.permute(0, 2, 3, 1).flatten(1, 2)
        pos_embed = torch.cat([cls_token_pe, img_token_pe], dim=1)

        x = self.pos_drop(x + pos_embed)
        x = self.blocks(x)
        x = self.norm(x)
        return x[:, 0]

    def forward(self, x):
        x = self.forward_features(x)
        x = self.head(x)
        return x

    def freeze_backbone(self):
        backbone = [self.patch_embed, self.cls_token, self.pos_embed, self.pos_drop, self.blocks[:8]]
        for module in backbone:
            try:
                for param in module.parameters():
                    param.requires_grad = False
            except:
                module.requires_grad = False

    def Unfreeze_backbone(self):
        backbone = [self.patch_embed, self.cls_token, self.pos_embed, self.pos_drop, self.blocks[:8]]
        for module in backbone:
            try:
                for param in module.parameters():
                    param.requires_grad = True
            except:
                module.requires_grad = True

?Vision Transforme的构建代码

import math
from collections import OrderedDict
from functools import partial

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F

#--------------------------------------#
#   Gelu激活函数的实现
#   利用近似的数学公式
#--------------------------------------#
class GELU(nn.Module):
    def __init__(self):
        super(GELU, self).__init__()

    def forward(self, x):
        return 0.5 * x * (1 + F.tanh(np.sqrt(2 / np.pi) * (x + 0.044715 * torch.pow(x,3))))

def drop_path(x, drop_prob: float = 0., training: bool = False):
    if drop_prob == 0. or not training:
        return x
    keep_prob       = 1 - drop_prob
    shape           = (x.shape[0],) + (1,) * (x.ndim - 1)
    random_tensor   = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
    random_tensor.floor_() 
    output          = x.div(keep_prob) * random_tensor
    return output

class DropPath(nn.Module):
    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training)

class PatchEmbed(nn.Module):
    def __init__(self, input_shape=[224, 224], patch_size=16, in_chans=3, num_features=768, norm_layer=None, flatten=True):
        super().__init__()
        self.num_patches    = (input_shape[0] // patch_size) * (input_shape[1] // patch_size)
        self.flatten        = flatten

        self.proj = nn.Conv2d(in_chans, num_features, kernel_size=patch_size, stride=patch_size)
        self.norm = norm_layer(num_features) if norm_layer else nn.Identity()

    def forward(self, x):
        x = self.proj(x)
        if self.flatten:
            x = x.flatten(2).transpose(1, 2)  # BCHW -> BNC
        x = self.norm(x)
        return x

#--------------------------------------------------------------------------------------------------------------------#
#   Attention机制
#   将输入的特征qkv特征进行划分,首先生成query, key, value。query是查询向量、key是键向量、v是值向量。
#   然后利用 查询向量query 叉乘 转置后的键向量key,这一步可以通俗的理解为,利用查询向量去查询序列的特征,获得序列每个部分的重要程度score。
#   然后利用 score 叉乘 value,这一步可以通俗的理解为,将序列每个部分的重要程度重新施加到序列的值上去。
#--------------------------------------------------------------------------------------------------------------------#
class Attention(nn.Module):
    def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.):
        super().__init__()
        self.num_heads  = num_heads
        self.scale      = (dim // num_heads) ** -0.5

        self.qkv        = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop  = nn.Dropout(attn_drop)
        self.proj       = nn.Linear(dim, dim)
        self.proj_drop  = nn.Dropout(proj_drop)

    def forward(self, x):
        B, N, C     = x.shape
        qkv         = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v     = qkv[0], qkv[1], qkv[2]

        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x

class Mlp(nn.Module):
    """ MLP as used in Vision Transformer, MLP-Mixer and related networks
    """
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=GELU, drop=0.):
        super().__init__()
        out_features    = out_features or in_features
        hidden_features = hidden_features or in_features
        drop_probs      = (drop, drop)

        self.fc1    = nn.Linear(in_features, hidden_features)
        self.act    = act_layer()
        self.drop1  = nn.Dropout(drop_probs[0])
        self.fc2    = nn.Linear(hidden_features, out_features)
        self.drop2  = nn.Dropout(drop_probs[1])

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop1(x)
        x = self.fc2(x)
        x = self.drop2(x)
        return x

class Block(nn.Module):
    def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0.,
                 drop_path=0., act_layer=GELU, norm_layer=nn.LayerNorm):
        super().__init__()
        self.norm1      = norm_layer(dim)
        self.attn       = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop)
        self.norm2      = norm_layer(dim)
        self.mlp        = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=drop)
        self.drop_path  = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        
    def forward(self, x):
        x = x + self.drop_path(self.attn(self.norm1(x)))
        x = x + self.drop_path(self.mlp(self.norm2(x)))
        return x
        
class VisionTransformer(nn.Module):
    def __init__(
            self, input_shape=[224, 224], patch_size=16, in_chans=3, num_classes=1000, num_features=768,
            depth=12, num_heads=12, mlp_ratio=4., qkv_bias=True, drop_rate=0.1, attn_drop_rate=0.1, drop_path_rate=0.1,
            norm_layer=partial(nn.LayerNorm, eps=1e-6), act_layer=GELU
        ):
        super().__init__()
        #-----------------------------------------------#
        #   224, 224, 3 -> 196, 768
        #-----------------------------------------------#
        self.patch_embed    = PatchEmbed(input_shape=input_shape, patch_size=patch_size, in_chans=in_chans, num_features=num_features)
        num_patches         = (224 // patch_size) * (224 // patch_size)
        self.num_features   = num_features
        self.new_feature_shape = [int(input_shape[0] // patch_size), int(input_shape[1] // patch_size)]
        self.old_feature_shape = [int(224 // patch_size), int(224 // patch_size)]

        #--------------------------------------------------------------------------------------------------------------------#
        #   classtoken部分是transformer的分类特征。用于堆叠到序列化后的图片特征中,作为一个单位的序列特征进行特征提取。
        #
        #   在利用步长为16x16的卷积将输入图片划分成14x14的部分后,将14x14部分的特征平铺,一幅图片会存在序列长度为196的特征。
        #   此时生成一个classtoken,将classtoken堆叠到序列长度为196的特征上,获得一个序列长度为197的特征。
        #   在特征提取的过程中,classtoken会与图片特征进行特征的交互。最终分类时,我们取出classtoken的特征,利用全连接分类。
        #--------------------------------------------------------------------------------------------------------------------#
        #   196, 768 -> 197, 768
        self.cls_token      = nn.Parameter(torch.zeros(1, 1, num_features))
        #--------------------------------------------------------------------------------------------------------------------#
        #   为网络提取到的特征添加上位置信息。
        #   以输入图片为224, 224, 3为例,我们获得的序列化后的图片特征为196, 768。加上classtoken后就是197, 768
        #   此时生成的pos_Embedding的shape也为197, 768,代表每一个特征的位置信息。
        #--------------------------------------------------------------------------------------------------------------------#
        #   197, 768 -> 197, 768
        self.pos_embed      = nn.Parameter(torch.zeros(1, num_patches + 1, num_features))
        self.pos_drop       = nn.Dropout(p=drop_rate)

        #-----------------------------------------------#
        #   197, 768 -> 197, 768  12次
        #-----------------------------------------------#
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]
        self.blocks = nn.Sequential(
            *[
                Block(
                    dim         = num_features, 
                    num_heads   = num_heads, 
                    mlp_ratio   = mlp_ratio, 
                    qkv_bias    = qkv_bias, 
                    drop        = drop_rate,
                    attn_drop   = attn_drop_rate, 
                    drop_path   = dpr[i], 
                    norm_layer  = norm_layer, 
                    act_layer   = act_layer
                )for i in range(depth)
            ]
        )
        self.norm = norm_layer(num_features)
        self.head = nn.Linear(num_features, num_classes) if num_classes > 0 else nn.Identity()

    def forward_features(self, x):
        x = self.patch_embed(x)
        cls_token = self.cls_token.expand(x.shape[0], -1, -1) 
        x = torch.cat((cls_token, x), dim=1)
        
        cls_token_pe = self.pos_embed[:, 0:1, :]
        img_token_pe = self.pos_embed[:, 1: , :]

        img_token_pe = img_token_pe.view(1, *self.old_feature_shape, -1).permute(0, 3, 1, 2)
        img_token_pe = F.interpolate(img_token_pe, size=self.new_feature_shape, mode='bicubic', align_corners=False)
        img_token_pe = img_token_pe.permute(0, 2, 3, 1).flatten(1, 2)
        pos_embed = torch.cat([cls_token_pe, img_token_pe], dim=1)

        x = self.pos_drop(x + pos_embed)
        x = self.blocks(x)
        x = self.norm(x)
        return x[:, 0]

    def forward(self, x):
        x = self.forward_features(x)
        x = self.head(x)
        return x

    def freeze_backbone(self):
        backbone = [self.patch_embed, self.cls_token, self.pos_embed, self.pos_drop, self.blocks[:8]]
        for module in backbone:
            try:
                for param in module.parameters():
                    param.requires_grad = False
            except:
                module.requires_grad = False

    def Unfreeze_backbone(self):
        backbone = [self.patch_embed, self.cls_token, self.pos_embed, self.pos_drop, self.blocks[:8]]
        for module in backbone:
            try:
                for param in module.parameters():
                    param.requires_grad = True
            except:
                module.requires_grad = True

    
def vit(input_shape=[224, 224], pretrained=False, num_classes=1000):
    model = VisionTransformer(input_shape)
    if pretrained:
        model.load_state_dict(torch.load("model_data/vit-patch_16.pth"))

    if num_classes!=1000:
        model.head = nn.Linear(model.num_features, num_classes)
    return model

参考:Vision Transformer详解

神经网络学习小记录67——Pytorch版 Vision Transformer(VIT)模型的复现详解

文章来源:https://blog.csdn.net/PLANTTHESON/article/details/135406380
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。