1.感知机计算预测值:

- 训练结果只有1、-1,故正负相同训练正确,正负相反即训练错误。
- σ(x)为激活函数,每个激活层都要有一个激活函数,但是激活函数不能是线性函数。
2.感知机训练:

- 如果预测值错误,对权重和偏移量进行更新后重新执行,直到所有数据分类正确才结束训练。
- 单层感知机不能拟合XOR函数
3.损失函数:

4.多层感知机:

- 每个激活层都要有一个激活函数。
- 多层感知机又分单隐藏层和多隐藏层,每个隐藏层都可能有多个隐藏单元。
5.单隐藏层的多层感知机代码实现:
import torch
from torch import nn
from d2l import torch as d2l
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
num_inputs, num_outputs, num_hiddens = 784, 10, 256
W1 = nn.Parameter(torch.randn(
num_inputs, num_hiddens, requires_grad=True) * 0.01)
b1 = nn.Parameter(torch.zeros(num_hiddens, requires_grad=True))
W2 = nn.Parameter(torch.randn(
num_hiddens, num_outputs, requires_grad=True) * 0.01)
b2 = nn.Parameter(torch.zeros(num_outputs, requires_grad=True))
def net(X):
X = X.reshape((-1, num_inputs))
H = relu(X@W1 + b1)
return (H@W2 + b2)
def relu(X):
a = torch.zeros_like(X)
return torch.max(X, a)
loss = nn.CrossEntropyLoss(reduction='none')
num_epochs, lr = 10, 0.1
updater = torch.optim.SGD(params, lr=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, updater)