LLMs之GLM-4:GLM-4的简介、安装和使用方法、案例应用之详细攻略

发布时间:2024年01月17日

LLMs之GLM-4:GLM-4的简介、安装和使用方法、案例应用之详细攻略

导读:2024年01月16日,智谱AI在「智谱AI技术开放日(Zhipu DevDay)」推出新一代基座大模型GLM-4。GLM-4 的主要亮点和能力如下:
>> 性能与GPT-4相近:多模态、长文本能力得到提升。在多个评测集上,GLM-4性能已接近或超过GPT-4
>> 强大的多模态能力:文生图和多模态理解能力得到增强,效果超过开源SD模型,逼近DALLE-3。
>> 全新推出的All Tools能力:GLM-4能自主理解和执行复杂任务,调用浏览器、代码解释器等完成复杂工作
>> 个性化智能体功能:用户可以通过智谱官网轻松创建属于自己的GLM智能体,实现大模型开发定制。
开心一笑,送给每一位AI研究学者:“OpenAI摸着石头过河,我们摸着OpenAI过河。” ^~^

目录

GLM-4的简介

1、模型性能

基础能力(英文)

指令跟随能力:达到GPT-4的90%左右

对齐能力:整体超过GPT-4

长文本能力:超过 Claude 2.1

多模态-文生图:是DALLE3的90%多

2、ALL Tools:根据用户意图,自动理解、规划复杂指令

All Tools -文生图

All Tools - 代码解释器:接近或同等GPT-4 All Tools的水平

All Tools -?网页浏览:是GPT-4 All Tools 的116%

All Tools - Function Call:与 GPT-4 Turbo 相当

All Tools - 多工具自动调用

3、We Are? More?Open

4、技术开放日—大会演讲PPT部分内容补充

公司历程

算法创新→模型之战→产业化落地→AGI

性能对比:GLM对比GPT

开源对比:GLM对比LLaMA

GLM-4的安装和使用方法

1、安装

2、GLMs?& MaaS API

3、使用方法

T1、利用API接口调用GLM-4

GLM-4的案例应用

1、使用现成工具测试效果

(1)、调用官方网页工具

2、动手创建

(1)、科研论文小助手:自定义一个Agent帮你翻译论文

(2)、笑伴君侧:自定义一个Agent给我带来欢笑


GLM-4的简介

2024年01月16日,智谱AI在「智谱AI技术开放日(Zhipu DevDay)」推出新一代基座大模型GLM-4。智谱AI发布 All Tools、GLMs、MaaS API、大模型科研基金、大模型开源基金以及「Z计划」创业基金等内容。
新一代基座大模型GLM-4,整体性能相比GLM3全面提升60%,逼近GPT-4;支持更长上下文;更强的多模态;支持更快推理速度,更多并发,大大降低推理成本;同时GLM-4增强了智能体能力

1、模型性能

基础能力(英文)

GLM-4 在 MMLU、GSM8K、MATH、BBH、HellaSwag、HumanEval等数据集上,分别达到GPT-4 94%、95%、91%、99%、90%、100%的水平。

图片

指令跟随能力:达到GPT-4的90%左右

GLM-4在IFEval的prompt级别上中、英分别达到GPT-4的88%、85%的水平,在Instruction级别上中、英分别达到GPT-4的90%、89%的水平。

图片

对齐能力:整体超过GPT-4

GLM-4在中文对齐能力上整体超过GPT-4。

图片

长文本能力:超过 Claude 2.1

我们在LongBench(128K)测试集上对多个模型进行评测,GLM-4性能超过 Claude 2.1;在「大海捞针」(128K)实验中,GLM-4的测试结果为 128K以内全绿,做到100%精准召回。

图片

多模态-文生图:是DALLE3的90%多

CogView3在文生图多个评测指标上,相比DALLE3 约在 91.4%?~99.3%的水平之间。

图片

2、ALL Tools:根据用户意图,自动理解、规划复杂指令

GLM-4 实现自主根据用户意图,自动理解、规划复杂指令,自由调用网页浏览器、Code Interpreter代码解释器和多模态文生图大模型,以完成复杂任务。简单来讲,即只需一个指令,GLM-4会自动分析指令,结合上下文选择决定调用合适的工具

All Tools -文生图

GLM-4 能够结合上下文进行AI绘画创作(CogView3),如下图所示,大模型能够遵循人的指令来不断修改生成图片的结果:

图片

All Tools - 代码解释器:接近或同等GPT-4 All Tools的水平

GLM-4能够通过自动调用python解释器,进行复杂计算(例如复杂方程、微积分等),在GSM8K、MATH、Math23K等多个评测集上都取得了接近或同等GPT-4 All Tools的水平。

图片

通过?动调? python 解释器,进?复杂计算(复杂?程、微积分等)???????

同样GLM-4 也可以完成文件处理、数据分析、图表绘制等复杂任务,支持处理Excel、PDF、PPT等格式文件。

All Tools -?网页浏览:是GPT-4 All Tools 的116%

GLM-4 能够自行规划检索任务、自行选择信息源、自行与信息源交互,在准确率上能够达到 78.08,是GPT-4 All Tools 的116%。

图片

All Tools - Function Call:与 GPT-4 Turbo 相当

GLM-4 能够根据用户提供的Function描述,自动选择所需 Function并生成参数,以及根据 Function 的返回值生成回复;同时也支持一次输入进行多次 Function 调用,支持包含中文及特殊符号的 Function 名字。这一方面GLM-4 All Tools 与 GPT-4 Turbo 相当。

图片

All Tools - 多工具自动调用

除了以上单项工具自动调用外,GLM-4 同样能够实现多工具自动调用,例如结合?网页浏览、CogView3、代码解释器等的调用方式。

图片

图片

3、We Are? More?Open

We are more open。我们一直在路上, 我们期待与所有研究者和开发者共同探索大模型的未来,为社会创造价值。

从ChatGLM一代二代三代以来,我们几乎开源了所有内核模型,包括千亿级基座GLM-130B、搜索增强模型WebGLM、图形理解模型VisualGLM、代码模型CodeGeeX1、2,文生图模型CogView1、2,图形增强理解模型CogVLM还有可视化认知Agent模型CogAgent。我们希望这些模型能够帮助大家深入认知大模型技术,而不是简单调用,帮助大家一起探索大模型技术的未来。

4、技术开放日—大会演讲PPT部分内容补充

公司历程

???????

算法创新→模型之战→产业化落地→AGI

性能对比:GLM对比GPT

开源对比:GLM对比LLaMA

GLM-4的安装和使用方法

1、安装

等待开源中……

2、GLMs?& MaaS API

网页版体验地址:https://chatglm.cn/main/detail

GLM-4的全线能力提升使得我们有机会探索真正意义上的GLMs。用户可以下载(更新)智谱清言 APP,进行体验,快速创建和分享自己的「智能体」。

图片

同样,MaaS 平台也将全网开放 GLM-4、GLM-4V、CogView3 等模型 API,并邀请内测 GLM-4 Assistant API。

3、使用方法

T1、利用API接口调用GLM-4

GLM-4的API接口文档https://open.bigmodel.cn/dev/api#glm-4

cogview-3的???????API接口文档https://open.bigmodel.cn/dev/api#cogview

import zhipuai

zhipuai.api_key = "your api key"
response = zhipuai.model_api.sse_invoke(
    model="glm-4",
    prompt= [],
    temperature= 0.95,
    top_p= 0.7,
    incremental=True
)

for event in response.events():
    if event.event == "add":
        print(event.data, end="")
    elif event.event == "error" or event.event == "interrupted":
        print(event.data, end="")
    elif event.event == "finish":
        print(event.data)
        print(event.meta, end="")
    else:
        print(event.data, end="")

GLM-4的案例应用

1、使用现成工具测试效果

(1)、调用官方网页工具

效果分析:信息定位到了,但存在旧版信息内容,故大模型总结存在偏差。

更多内容探索中……

2、动手创建

(1)、科研论文小助手:自定义一个Agent帮你翻译论文

(2)、笑伴君侧:自定义一个Agent给我带来欢笑

文章来源:https://blog.csdn.net/qq_41185868/article/details/135636014
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。