【10大专题,2.8w字详解】:从张量开始到GPT的《动手学深度学习》要点笔记

发布时间:2023年12月18日

🚀 《动手学深度学习PyTorch版》复习要点全记录 📘

🎯 专注于查漏补缺、巩固基础,这份笔记将带你深入理解深度学习的核心概念。通过一系列精心整理的小专题,逐步构建起你的AI知识框架。

🧠 从最基础的张量操作,到最新的GPT模型,每个专题都配备了直观的图示和详细的公式解析。

📚 初版笔记以《动手学深度学习PyTorch版》书籍为基准,随后将根据视频讲解和最新论文研读内容进行实时更新。

📈 所有专题都配备了精美的图表和公式推导。除非另有说明,所有图示均源自《动手学深度学习PyTorch版》官方PDF书籍。

? 欢迎在评论区提出问题,或是对内容的指正和建议,欢迎关注,点赞,收藏!

基础知识篇

  1. 张量,梯度,链式法则的基本概念
    了解深度学习的数学基础,包括张量的概念、梯度计算以及链式法则在神经网络中的应用。

  2. 线性回归,softmax回归,多层感知机,激活函数的基本概念
    掌握线性回归、softmax回归的基础知识,多层感知机的结构,以及激活函数对非线性问题求解的重要性。

  3. K折交叉验证,欠(过)拟合,权重衰退,暂退法的基本概念
    理解K折交叉验证的机制,识别欠拟合和过拟合的现象,以及权重衰退和暂退法在防止过拟合中的作用。

神经网络篇

  1. 前(反)向传播,梯度消失和爆炸,batch normalization
    探索前向传播和反向传播的过程,梯度消失和爆炸问题的成因及其解决方案,以及batch normalization的原理和效果。

卷积神经网络篇

  1. 卷积计算,CNN,CNN中的注意力相关概念
    深入理解卷积计算的原理,卷积神经网络(CNN)的结构,以及注意力机制在CNN中的应用。

  2. 残差连接相关概念
    学习残差连接的概念,它是如何帮助训练更深的神经网络,以及它在实际模型中的应用。

循环神经网络篇

  1. 序列模型,语言模型,RNN的相关概念
    探究序列模型和语言模型的基础,理解循环神经网络(RNN)的结构和特点。

  2. GRU,LSTM,encoder-decoder架构,seq2seq的相关概念
    了解GRU和LSTM的工作机制,encoder-decoder架构的设计,以及seq2seq模型的工作原理。

Transformer时代篇

  1. 注意力机制,Transformer相关详解
    深入分析注意力机制的原理,以及它如何在Transformer模型中被应用以改善序列处理任务。

  2. word2vec,BERT,GPT相关概念
    掌握word2vec的基本思想,BERT和GPT这两种预训练模型的结构和使用方法。

文章来源:https://blog.csdn.net/qq_46348508/article/details/135060107
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。