模式识别与机器学习(八):决策树

发布时间:2023年12月23日

1.原理

决策树(Decision Tree),它是一种以树形数据结构来展示决策规则和分类结果的模型,作为一种归纳学习算法,其重点是将看似无序、杂乱的已知数据,通过某种技术手段将它们转化成可以预测未知数据的树状模型,每一条从根结点(对最终分类结果贡献最大的属性)到叶子结点(最终分类结果)的路径都代表一条决策的规则。

一般,一棵决策树包含一个根节点,若干个内部结点和若干个叶结点。

叶结点对应于决策结果,其他每个结点对应于一个属性测试。每个结点包含的样本集合根据属性测试的结果划分到子结点中,根结点包含样本全集,从根结点到每个叶结点的路径对应了一个判定的测试序列。决策树学习的目的是产生一棵泛化能力强,即处理未见示例强的决策树。

使用决策树进行决策的过程就是从根节点开始,测试待分类项中相应的特征属性,并按照其值选择输出分支,直到到达叶子节点,将叶子节点存放的类别作为决策结果。

1.步骤

至于如何生成决策树,具体步骤如下图:
在这里插入图片描述

上图就是在生成决策树的过程中经历的步骤。详细步骤如下:

(1).首先从开始位置,将所有数据划分到一个节点,即根节点。

(2).然后经历橙色的两个步骤,橙色的表示判断条件:

若数据为空集,跳出循环。如果该节点是根节点,返回null;如果该节点是中间节点,将该节点标记为训练数据中类别最多的类

若样本都属于同一类,跳出循环,节点标记为该类别;

(3).如果经过橙色标记的判断条件都没有跳出循环,则考虑对该节点进行划分。既然是算法,则不能随意的进行划分,要讲究效率和精度,选择当前条件下的最优属性划分(什么是最优属性,这是决策树的重点,后面会详细解释)

(4).经历上步骤划分后,生成新的节点,然后循环判断条件,不断生成新的分支节点,直到所有节点都跳出循环。

(5).结束。这样便会生成一棵决策树。

2.划分选择

了解了其步骤后,便明白了其关键便是如何寻找最优属性,其选择方法一般有三种。

(1).信息增益

通过方程 Gain ? ( D , a ) = Ent ? ( D ) ? ∑ v = 1 V ∣ D v ∣ ∣ D ∣ Ent ? ( D v ) \operatorname{Gain}(D,a)\mathrm{=}\operatorname{Ent}(D)-\sum_{v=1}^{V}\frac{|D^{v}|}{|D|}\operatorname{Ent}(D^{v}) Gain(D,a)=Ent(D)?v=1V?DDv?Ent(Dv)

来计算每个属性的信息增益,最优属性即为信息增益最大的属性。 E n t ( D ) = ? ∑ k = 1 ∣ γ ∣ p k log ? 2 p k \begin{aligned}\mathrm{Ent}(D)&=-\sum_{k=1}^{|\gamma|}p_k\log_2p_k\end{aligned} Ent(D)?=?k=1γ?pk?log2?pk??
,Ent(D)即为样本D的信息熵,由该公式计算可得。

(2).信息增益率

信息增益准则对可取值数目较多的属性有所偏好,增益率定义如下:
G a i n _ r a t i o ( D , a ) = G a i n ( D , a ) I V ( a ) \mathrm{Gain\_ratio}(D,a)=\frac{\mathrm{Gain}(D,a)}{\mathrm{IV}(a)} Gain_ratio(D,a)=IV(a)Gain(D,a)?

其中 I V ( a ) = ? ∑ v = 1 V ∣ D v ∣ ∣ D ∣ log ? 2 ∣ D v ∣ ∣ D ∣ \begin{aligned}\mathrm{IV}(a)=&-\sum_{v=1}^V\frac{|D^v|}{|D|}\log_2\frac{|D^v|}{|D|}\end{aligned} IV(a)=??v=1V?DDv?log2?DDv??称为属性a的固有值。该划分算法先从候选划分属性中找出信息增益高于平均水平的属性,再从中选择增益率最高的属性。

(3).基尼指数

数据D的纯度可用基尼值来度量,即用如下公式来计算:
G i n i ( D ) = ∑ k = 1 ∣ γ ∣ ∑ k ′ ≠ k p k p k ′ = 1 ? ∑ k = 1 ∣ γ ∣ p k 2 \mathrm{Gini}(D){=\sum_{k=1}^{|\gamma|}\sum_{k^{\prime}\neq k}p_kp_{k^{\prime}}=1-\sum_{k=1}^{|\gamma|}p_k^2} Gini(D)=k=1γ?k=k?pk?pk?=1?k=1γ?pk2?

Gini(D)反映了从数据集D中随机抽取两个样本,其类别标记不一致的概率,Gini(D)越小,表示数据集D的纯度越高。而属性a的基尼指数则是根据这个公式推广而得,具体形式如下: G i n i _ i n d e x ( D , a ) = ∑ v = 1 V ∣ D v ∣ ∣ D ∣ G i n i ( D v ) \mathrm{Gini\_index}(D,a)=\sum_{v=1}^{V}\frac{|D^{v}|}{|D|}\mathrm{Gini}(D^{v}) Gini_index(D,a)=v=1V?DDv?Gini(Dv)
。在候选属性集合A中,选择那个使得划分后基尼指数最小的属性作为最优划分属性。

3.剪枝

剪枝顾名思义就是给决策树 “去掉” 一些判断分支,同时在剩下的树结构下仍然能得到不错的结果。之所以进行剪枝,是为了防止或减少 “过拟合现象” 的发生,是决策树具有更好的泛化能力。

剪枝主要分为两种方法,其一是预剪枝,即在决策树构造时就进行剪枝。在决策树构造过程中,对节点进行评估,如果对其划分并不能再验证集中提高准确性,那么该节点就不要继续王下划分。这时就会把当前节点作为叶节点。其二是后剪枝,即在生成决策树之后再剪枝。通常会从决策树的叶节点开始,逐层向上对每个节点进行评估。如果剪掉该节点,带来的验证集中准确性差别不大或有明显提升,则可以对它进行剪枝,用叶子节点来代填该节点。

2.代码

在scikit-learn中,你可以通过设置DecisionTreeClassifier的参数来进行决策树的剪枝,以防止过拟合。以下是一些常用的参数:

max_depth:决策树的最大深度。这可以防止树过于复杂,导致过拟合。

min_samples_split:分割内部节点所需的最少样本数。如果一个节点的样本数少于这个值,那么这个节点就不会被分割。

min_samples_leaf:在叶节点处需要的最小样本数。这可以防止创建样本数过少的叶节点。

max_leaf_nodes:最大叶节点数量。这是另一种控制树大小的方法。

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier

# 加载鸢尾花数据集
iris = load_iris()
X = iris.data
y = iris.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 创建决策树分类器,并设置剪枝参数
clf = DecisionTreeClassifier(max_depth=3, min_samples_split=10, min_samples_leaf=5, max_leaf_nodes=10)

# 训练模型
clf.fit(X_train, y_train)

# 预测测试集
y_pred = clf.predict(X_test)

# 打印预测结果
print(y_pred)
文章来源:https://blog.csdn.net/m0_68926749/article/details/135174932
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。