目录
SLAM中使用闭环检测进行重定位的步骤如下:
#include <pcl/io/pcd_io.h>
#include <pcl/features/feature.h>
#include <pcl/registration/correspondence_estimation.h>
#include <pcl/registration/correspondence_rejection.h>
#include <pcl/registration/icp.h>
int main() {
// 加载当前帧
pcl::PointCloud<pcl::PointXYZ> current_frame;
pcl::io::loadPCDFile("current_frame.pcd", current_frame);
// 加载地图
pcl::PointCloud<pcl::PointXYZ> map;
pcl::io::loadPCDFile("map.pcd", map);
// 提取当前帧特征
pcl::PointCloud<pcl::PointXYZ> current_features;
pcl::extractFeatures(current_frame, current_features);
// 计算当前帧与地图之间的匹配
pcl::CorrespondenceEstimation<pcl::PointXYZ, pcl::PointXYZ> correspondence_estimation;
correspondence_estimation.setInputSource(current_features);
correspondence_estimation.setInputTarget(map);
std::vector<pcl::Correspondence> correspondences;
correspondence_estimation.determineRANSACCorrespondences(correspondences);
// 对匹配结果进行评分
pcl::CorrespondenceRejectorSampleConsensus<pcl::PointXYZ> correspondence_rejector;
correspondence_rejector.setInputCorrespondences(correspondences);
correspondence_rejector.setInlierThreshold(0.1);
correspondences = correspondence_rejector.getCorrespondences();
// 对匹配进行验证
pcl::registration::CorrespondenceRejectorDistance<pcl::PointXYZ> correspondence_rejector_distance;
correspondence_rejector_distance.setInputCorrespondences(correspondences);
correspondence_rejector_distance.setMinimumDistance(0.2);
correspondences = correspondence_rejector_distance.getCorrespondences();
// 如果匹配数大于阈值,则构成闭环
int num_inliers = correspondences.size();
if (num_inliers > 100) {
// 计算闭环帧与当前帧之间的位姿
pcl::IterativeClosestPoint<pcl::PointXYZ, pcl::PointXYZ> icp;
icp.setInputSource(current_frame);
icp.setInputTarget(map, correspondences);
icp.align();
const Eigen::Matrix4f& transformation = icp.getFinalTransformation();
// 输出位姿
std::cout << "位姿:" << transformation << std::endl;
}
return 0;
}
首先加载当前帧和地图。然后,使用特征匹配算法提取当前帧特征,并计算当前帧与地图之间的匹配。对匹配结果进行评分和验证,如果匹配数大于阈值,则构成闭环。最后,计算闭环帧与当前帧之间的位姿。
在实际应用中,可以根据SLAM系统的具体情况调整闭环检测的参数,如匹配阈值、内点阈值等。