Pytorch的安装

发布时间:2023年12月17日

Pytorch的安装

PyTorch的安装绝对是一个不是那么简单的过程,或多或少总是会出现一些奇奇怪怪的问题,这里分享记录一下PyTorch的安装心得。

查看显卡信息

没用显卡的直接跳过,然后通过在cmd命令行中输入nvidia-smi(Linux和Win命令一样)、使用NVIDIA控制面板和使用任务管理器查看机器是否有NVIDIA的独立显卡及其型号

root@master:/code # nvidia-smi
Fri Dec  8 03:09:45 2023       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 470.57.02    Driver Version: 470.57.02    CUDA Version: 11.4     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  Tesla V100S-PCI...  Off  | 00000000:8B:00.0 Off |                    0 |
| N/A   35C    P0    27W / 250W |      0MiB / 32510MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+

CUDA兼容性

参考:CUDA兼容性

NVIDIA CUDA工具包使开发人员能够为台式计算机、企业和数据中心乃至超大规模企业构建 NVIDIA GPU 加速的计算应用程序。它由 CUDA 编译器工具链组成,其中包括 CUDA 运行时 (cudart) 以及各种 CUDA 库和工具。要构建应用程序,开发人员只需安装 CUDA 工具包和链接所需的必要库。

为了运行 CUDA 应用程序,系统应具有支持 CUDA 的 GPU 和与用于构建应用程序本身的 CUDA 工具包兼容的 NVIDIA 显示驱动程序。如果应用程序依赖于库的动态链接,那么系统也应该具有此类库的正确版本。

CUDA 的组件:
在这里插入图片描述

CUDA软件主要包括三部分:

CUDA Toolkit : 库文件、运行环境 和 开发工具, 主要是面向开发者 CUDA编译环境

CUDA Driver: 用户驱动组建,用于运行 CUDA 程序,可以理解为 CUDA运行环境

Nvidia GPU 驱动 : 显卡核心驱动,就是 硬件驱动

CUDA版本与驱动版本关系如下:

参考:CUDA发布说明

CUDA ToolkitLinux x86_64 Driver VersionWindows x86_64 Driver Version
CUDA 12.3 Update 1>=545.23.08>=546.12
CUDA 12.3 GA>=545.23.06>=545.84
CUDA 12.2 Update 2>=535.104.05>=537.13
CUDA 12.2 Update 1>=535.86.09>=536.67
CUDA 12.2 GA>=535.54.03>=536.25
CUDA 12.1 Update 1>=530.30.02>=531.14
CUDA 12.1 GA>=530.30.02>=531.14
CUDA 12.0 Update 1>=525.85.12>=528.33
CUDA 12.0 GA>=525.60.13>=527.41
CUDA 11.8 GA>=520.61.05>=520.06
CUDA 11.7 Update 1>=515.48.07>=516.31
CUDA 11.7 GA>=515.43.04>=516.01
CUDA 11.6 Update 2>=510.47.03>=511.65
CUDA 11.6 Update 1>=510.47.03>=511.65
CUDA 11.6 GA>=510.39.01>=511.23
CUDA 11.5 Update 2>=495.29.05>=496.13
CUDA 11.5 Update 1>=495.29.05>=496.13
CUDA 11.5 GA>=495.29.05>=496.04
CUDA 11.4 Update 4>=470.82.01>=472.50
CUDA 11.4 Update 3>=470.82.01>=472.50
CUDA 11.4 Update 2>=470.57.02>=471.41
CUDA 11.4 Update 1>=470.57.02>=471.41
CUDA 11.4.0 GA>=470.42.01>=471.11
CUDA 11.3.1 Update 1>=465.19.01>=465.89
CUDA 11.3.0 GA>=465.19.01>=465.89
CUDA 11.2.2 Update 2>=460.32.03>=461.33
CUDA 11.2.1 Update 1>=460.32.03>=461.09
CUDA 11.2.0 GA>=460.27.03>=460.82
CUDA 11.1.1 Update 1>=455.32>=456.81
CUDA 11.1 GA>=455.23>=456.38
CUDA 11.0.3 Update 1>= 450.51.06>= 451.82
CUDA 11.0.2 GA>= 450.51.05>= 451.48
CUDA 11.0.1 RC>= 450.36.06>= 451.22
CUDA 10.2.89>= 440.33>= 441.22
CUDA 10.1 (10.1.105 general release, and updates)>= 418.39>= 418.96
CUDA 10.0.130>= 410.48>= 411.31
CUDA 9.2 (9.2.148 Update 1)>= 396.37>= 398.26
CUDA 9.2 (9.2.88)>= 396.26>= 397.44
CUDA 9.1 (9.1.85)>= 390.46>= 391.29
CUDA 9.0 (9.0.76)>= 384.81>= 385.54
CUDA 8.0 (8.0.61 GA2)>= 375.26>= 376.51
CUDA 8.0 (8.0.44)>= 367.48>= 369.30
CUDA 7.5 (7.5.16)>= 352.31>= 353.66
CUDA 7.0 (7.0.28)>= 346.46>= 347.62

一定要保证PyTorch与cuda toolkit的版本适配,参考:PyTorch版本要求

总结概括:Nvidia GPU驱动必须大于CUDA Toolkit要求的Nvida GPU驱动版本,或者PyTorch版本要求的CUDA版本对应驱动与Nvidia GPU驱动符合匹配要求

安装说明

访问PyTorch官网

可以选择本地开始(Start Locally),云开发(Cloud Partners),以前的Pytorch版本(Previous PyTorch Versions),移动端开发(Mobile),在此处选择本地安装

在这里插入图片描述
Windows下使用PIP方式安装,计算平台使用CPU,安装方式如下:

pip3 install torch torchvision torchaudio

在这里插入图片描述
Windows下使用conda方式安装,计算平台使用cuda,安装方式如下:

conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia

在这里插入图片描述
更多安装方式参考:https://pytorch.org/get-started/locally/

注意:

Stable代表的是稳定版本,Preview代表的是先行版本

结合电脑是否有显卡,选择CPU版本还是CUDA版本,CUDA版本需要拥有独显且是NVIDIA的GPU

一定要保持PyTorch和cudatoolkit的版本适配

开始安装

在上面使用nvidia-smi命令查看显卡信息,得出驱动程序版本是470.57.02,显卡驱动支持的CUDA版本是11.4,参考上面CUDA版本与GPU驱动程序版之间的关系列表,得出:

 1.若使用当前机器上GPU驱动,不升级,则只能从PyTorch官网查询与当前GPU所使用的CUDA相匹配的PyTorch版本

 2.若想使用较新版本的PyTorch,其使用的CUDA版本以及要求的GPU驱动版本必定较高,此时需要升级机器是的GPU驱动

 3.一定保证PyTorch版本要求使用的CUDA版本对应的驱动与GPU驱动版本相匹配

这里没有PyTorch版本特殊要求,使用最便捷的方式,不对当前GPU驱动进行升级,访问PyTorch版本记录查询匹配的PyTorch版本进行安装。

因为该机器可以支持最高CUDA版本为11.4,且官方版本记录中没有找到CUDA11.4的支持,驱动可以向下兼容,所以小于等于11.4的CUDA版本理论来说都可以安装,这里选择CUDA 11.3

具体安装命令如下:

# CUDA 11.3
conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.3 -c pytorch

注意:

根据自身网络情况调整下载地址

# 从官网下载
-c pytorch

# 单独指定一个镜像下载
–c 镜像地址

检验是否安装成功

import torch

if __name__ == '__main__':
    if torch.cuda.is_available():
        print("GPU是否可用:", torch.cuda.is_available())  # 查看GPU是否可用
        print("GPU数量:", torch.cuda.device_count())  # 查看GPU数量
        print("torch方法查看CUDA版本:", torch.version.cuda)  # torch方法查看CUDA版本
        print("GPU索引号:", torch.cuda.current_device())  # 查看GPU索引号
        print("GPU名称:", torch.cuda.get_device_name(0))  # 根据索引号得到GPU名称
    else:
        print("GPU不可用")

常见异常

各种相关依赖、库文件安装完毕后,准备启动项目,出现异常:

CUDA initialization: The NVIDIA driver on your system is too old (found version 11040). Please update your GPU driver by downloading and installing a new version from the URL: http://www.nvidia.com/Download/index.aspx Alternatively, go to: https://pytorch.org to install a PyTorch version that has been compiled with your version of the CUDA driver. (Triggered internally at ../c10/cuda/CUDAFunctions.cpp:108.)

原因:

系统上的NVIDIA驱动程序版本过旧,或者说NVIDIA驱动程序和CUDA驱动程序与所安装的PyTorch版本存在兼容性

解决办法:

1.下载并安装新版本的GPU驱动程序:http://www.nvidia.com/Download/index.aspx

2.安装一个与CUDA 驱动程序版本兼容的PyTorch版本:https://pytorch.org

在更新了驱动程序或安装了兼容的 PyTorch 版本后,这个问题应该会得到解决。

安装CUDA

NVIDIA GPU驱动程序已经包含了基本的CUDA支持,但安装额外的CUDA工具包可以提供更多功能和开发工具,能够更好地编写、调试和优化CUDA程序。这取决于具体需求和开发环境。

访问https://developer.nvidia.com/cuda-downloads下载对应版本的CUDA
在这里插入图片描述
选择需要的版本进行下载
在这里插入图片描述
默认情况下是自动添加到环境变量中,变量名:CUDA_PATH 变量值:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8

验证查看CUDA的版本信息

C:\Users\Admin>nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2022 NVIDIA Corporation
Built on Wed_Sep_21_10:41:10_Pacific_Daylight_Time_2022
Cuda compilation tools, release 11.8, V11.8.89
Build cuda_11.8.r11.8/compiler.31833905_0
文章来源:https://blog.csdn.net/qq_38628046/article/details/134794902
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。