lv14 信号量、互斥锁、并发控制机制选择

发布时间:2024年01月21日

1 信号量:基于阻塞的并发控制机制

a.定义信号量

struct semaphore sem;

b.初始化信号量

void sema_init(struct semaphore *sem, int val);

c.获得信号量P

int down(struct semaphore *sem);//深度睡眠
int down_interruptible(struct semaphore *sem);//浅度睡眠

d.释放信号量V

void up(struct semaphore *sem);

适用场合:任务上下文之间且临界区执行时间较长时的互斥或同步问题

#include <linux/semaphore.h>

注意:pv操作成对出现

1.1 示例

新建信号量,在init中初始化,read、write、poll、ioctl函数中添加pv操作

mychar_sema.c

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/cdev.h>
#include <asm/uaccess.h>
#include <linux/wait.h>
#include <linux/sched.h>
#include <linux/poll.h>


#include "mychar.h"

#define BUF_LEN 100

#define MYCHAR_DEV_CNT 3

int major = 11;
int minor = 0;
int mychar_num  = MYCHAR_DEV_CNT;

//新建结构体类型
struct mychar_dev
{
	struct cdev mydev;
	char mydef_buf[BUF_LEN];  //相当于结构体的私有变量
	int curlen;          //相当于结构体的私有变量
	struct semaphore sem; //定义信号量
	wait_queue_head_t rq; //等待读队列
	wait_queue_head_t wq; //等待写队列

	struct fasync_struct *pasync_obj;  //实现异步通知机制的数据结构

};

struct mychar_dev gmydev;

int mychar_open(struct inode *pnode, struct file *pfile)
{
	//利用private_data私有变量来指向全局变量结构体地址
	pfile->private_data = (void*)(container_of(pnode->i_cdev,struct mychar_dev,mydev));
    printk("mychar_open is called\n");
    return 0;
}

int mychar_close(struct inode *pnode, struct file *pfile)
{
	struct mychar_dev *pmydev = (struct mychar_dev *)pfile->private_data;

    printk("mychar_close is called\n");
	if(pmydev->pasync_obj != NULL)
	{
		fasync_helper(-1,pfile,0,&pmydev->pasync_obj);  //则调用fasync_helper函数来取消异步通知
	}
    return 0;
}


ssize_t mychar_read(struct file *filp, char __user *pbuf, size_t count, loff_t *ppos)
{
	int ret = 0;
	int size = 0;
	//获取全家变量结构体地址
	struct mychar_dev *pmydev = (struct mychar_dev *)filp->private_data;

	down(&pmydev->sem);
	if(pmydev->curlen <= 0)
	{
		if(filp->f_flags & O_NONBLOCK)
		{//非阻塞
			up(&pmydev->sem);
			printk("O_NONBLOCK No Data Read\n");
			return -1;
		}
		else
		{//阻塞
			up(&pmydev->sem);
			ret = wait_event_interruptible(pmydev->rq,pmydev->curlen > 0);
			if(ret)
			{
				printk("Wake up by signal\n");
				return -ERESTARTSYS;
			}
			down(&pmydev->sem);
		}
	}

 	if(count > pmydev->curlen)
	{
		size = pmydev->curlen;
	}
	else
	{
		size = count;
	}

	//将内核空间中的数据复制到用户空间
	ret = copy_to_user(pbuf,pmydev->mydef_buf,size);
	if(ret)
	{
		up(&pmydev->sem);
		printk("copy_to_user failed\n");
		return -1;
	}
	//读完之后把后面的内容再拷贝过来,同时更新curlen
	memcpy(pmydev->mydef_buf,pmydev->mydef_buf+size,pmydev->curlen - size);
	pmydev->curlen = pmydev->curlen - size;
	up(&pmydev->sem);
	wake_up_interruptible(&pmydev->wq);

	return size;

}

ssize_t mychar_write (struct file *filp, const char __user *pbuf, size_t count, loff_t *ppos)
{

	int size = 0;
	int ret  = 0;
	//获取全家变量结构体地址
	struct mychar_dev *pmydev = (struct mychar_dev *)filp->private_data;

	down(&pmydev->sem);
	if(pmydev->curlen >= BUF_LEN)
	{
		if(filp->f_flags & O_NONBLOCK)
		{
			up(&pmydev->sem);
			printk("O_NONBLOCK Can not write data\n");
			return -1;
		}
		else
		{
			up(&pmydev->sem);  //不能让write函数拿着资源睡眠,否则其他无法拿到资源了
			ret = wait_event_interruptible(pmydev->wq,pmydev->curlen < BUF_LEN);
			if(ret)
			{
				printk("wake up by signal\n");
				return -ERESTARTSYS;
			}
			down(&pmydev->sem);
		}
	}

	if(count > BUF_LEN - pmydev->curlen)
	{
		size = BUF_LEN - pmydev->curlen;
	}
	else
	{
		size = count;
	}

	//将用户空间中的数据复制到内核空间中
	ret = copy_from_user(pmydev->mydef_buf + pmydev->curlen, pbuf, size);
	if(ret)
	{
		up(&pmydev->sem);
		printk("copy_from_user failed\n");
		return -1;
	}
    //更新curlen
	pmydev->curlen = pmydev->curlen + size;

	up(&pmydev->sem);
	wake_up_interruptible(&pmydev->rq);

	//数据写成功发送可读信号(同样读函数也可以实现)
	if(pmydev->pasync_obj != NULL)
	{
		kill_fasync(&pmydev->pasync_obj,SIGIO,POLL_IN);
	}
	return size;
}

long mychar_ioctl(struct file *filp, unsigned int cmd,unsigned long arg)
{
    int __user *pret = (int *)arg;
	int maxlen = BUF_LEN;
	int ret = 0;
	struct mychar_dev *pmydev = (struct mychar_dev *)filp->private_data;


	switch(cmd)
	{
		case MYCHAR_IOCTL_GET_MAXLEN:
			ret = copy_to_user(pret,&maxlen,sizeof(int));
			if(ret)
			{
				printk("copy_to_user MAXLEN failed\n");
				return -1;
			}
			break;
		case MYCHAR_IOCTL_GET_CURLEN:
            down(&pmydev->sem);
			ret = copy_to_user(pret,&pmydev->curlen,sizeof(int));
            up(&pmydev->sem);
			if(ret)
			{
				printk("copy_to_user CURLEN failed\n");
				return -1;
			}
			break;
		default:
			printk("The cmd is unknow\n");
			return -1;
	}
	return 0;
}

/*该函数与select、poll、epoll_wait函数相对应,协助这些多路监控函数判断本设备是否有数据可读写*/
unsigned int mychar_poll(struct file *filp, poll_table *ptb)
{
	struct mychar_dev *pmydev = (struct mychar_dev *)filp->private_data;
	unsigned int mask = 0;

	//将等待队列头添加至poll_table表中
	poll_wait(filp, &pmydev->rq,ptb);
	poll_wait(filp, &pmydev->wq,ptb);
	
	down(&pmydev->sem);
	if(pmydev->curlen > 0) //有数据可读
	{
		mask |= POLLIN | POLLRDNORM;
	}
	if(pmydev->curlen < BUF_LEN) //有空间可写
	{
		mask |= POLLOUT | POLLWRNORM;
	}
	up(&pmydev->sem);

	return mask;
	
	
}

//使用pmydev->pasync_obj作为异步通知对象进行注册
int mychar_fasync(int fd,struct file *filp,int mode)
{
	struct mychar_dev *pmydev = (struct mychar_dev *)filp->private_data;

	return fasync_helper(fd,filp,mode,&pmydev->pasync_obj);
}

//结构体初始化:部分变量赋值初始化
struct file_operations myops = {
    .owner = THIS_MODULE,
    .open = mychar_open,
    .release = mychar_close,
	.read = mychar_read,
	.write = mychar_write,
	.unlocked_ioctl = mychar_ioctl,
	.poll = mychar_poll,
	.fasync = mychar_fasync,
};

int mychar_init(void)
{
    int ret = 0;
    dev_t devno = MKDEV(major, minor);

    /* 申请设备号 */
    ret = register_chrdev_region(devno, mychar_num, "mychar");
    if (ret) {
        ret = alloc_chrdev_region(&devno, minor, mychar_num, "mychar");
        if (ret) {
            printk("get devno failed\n");
            return -1;
        }
		major = MAJOR(devno); // 容易遗漏,注意
    }

    /* 给struct cdev对象指定操作函数集 */
    cdev_init(&gmydev.mydev, &myops);

    /* 将 struct cdev对象添加到内核对应的数据结构里 */
    gmydev.mydev.owner = THIS_MODULE;
    cdev_add(&gmydev.mydev, devno, 1);

	//初始化队列
	init_waitqueue_head(&(gmydev.rq));
	init_waitqueue_head(&(gmydev.wq));
	//初始化信号量
	sema_init(&gmydev.sem, 1);	

    return 0;
}

void __exit mychar_exit(void)
{
    dev_t devno = MKDEV(major, minor);

    cdev_del(&gmydev.mydev);

    unregister_chrdev_region(devno, mychar_num);
	

}

//表示支持GPL的开源协议
MODULE_LICENSE("GPL");

module_init(mychar_init);
module_exit(mychar_exit);

Makefile

ifeq ($(KERNELRELEASE),)

ifeq ($(ARCH),arm)
KERNELDIR ?= /home/linux/Linux_4412/kernel/linux-3.14
ROOTFS ?= /opt/4412/rootfs
else
KERNELDIR ?= /lib/modules/$(shell uname -r)/build
endif
PWD := $(shell pwd)


modules:
	$(MAKE) -C $(KERNELDIR) M=$(PWD) modules

modules_install:
	$(MAKE) -C $(KERNELDIR) M=$(PWD) modules INSTALL_MOD_PATH=$(ROOTFS) modules_install

clean:
	rm -rf  *.o  *.ko  .*.cmd  *.mod.*  modules.order  Module.symvers   .tmp_versions

else
CONFIG_MODULE_SIG=n
obj-m += mychar.o
obj-m += mychar_poll.o
obj-m += openonce_atomic.o
obj-m += openonce_spinlock.o
obj-m += mychar_sema.o

endif

?testmychar_signal.c

测试函数不需要进行大的修改,直接拿以前的来测试,主要目的可以让函数打开字符设备的时候可以实现并发,不会出现竞态

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <sys/time.h>
#include <sys/select.h>
#include <errno.h>
#include <signal.h>

#include "mychar.h"
#include <stdio.h>

int fd = -1;

void sigio_handler(int signo);

int main(int argc,char *argv[])
{

	int flg = 0;

	if(argc < 2)
	{
		printf("The argument is too few\n");
		return 1;
	}

	signal(SIGIO,sigio_handler);

	fd = open(argv[1],O_RDWR);
	if(fd < 0)
	{
		printf("open %s failed\n",argv[1]);
		return 2;
	}
		
	//将文件描述符fd设置为异步通知模式,并将当前进程的PID设置为接收异步通知的进程
	fcntl(fd,F_SETOWN,getpid());  //数将当前进程的PID设置为fd的拥有者
	flg = fcntl(fd,F_GETFL);      //取fd的标志位
	flg |= FASYNC;                //然后使用按位或运算符将FASYNC标志位添加到标志中
	fcntl(fd,F_SETFL,flg);        //将flg(即带有FASYNC标志位的标志)设置为fd的标志位,从而使fd进入异步通知模式

	while(1)
	{	
		
	}


	close(fd);
	fd = -1;
	return 0;
}


void sigio_handler(int signo)
{
	char buf[8] = "";
	read(fd,buf,8);
	printf("buf=%s\n",buf);
}

编译

?插入内核模块

测试并发效果

2 互斥锁:基于阻塞的互斥机制

可以理解为特殊的信号量,只能解决单个资源控制。

a.初始化

struct mutex my_mutex; 
mutex_init(&my_mutex);

b.获取互斥体

void mutex_lock(struct mutex *lock);

c.释放互斥体

void mutex_unlock(struct mutex *lock);

?操作步骤:

定义对应类型的变量

初始化对应变量

P/加锁

临界区

V/解锁

#include <linux/mutex.h>

适用场合:任务上下文之间且临界区执行时间较长时的互斥问题。

1.2 示例

mychar_mutex.c

新建信号量,在init中初始化,read、write、poll、ioctl函数中添加pv操作

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/cdev.h>
#include <asm/uaccess.h>
#include <linux/wait.h>
#include <linux/sched.h>
#include <linux/poll.h>


#include "mychar.h"

#define BUF_LEN 100

#define MYCHAR_DEV_CNT 3

int major = 11;
int minor = 0;
int mychar_num  = MYCHAR_DEV_CNT;

//新建结构体类型
struct mychar_dev
{
	struct cdev mydev;
	char mydef_buf[BUF_LEN];  //相当于结构体的私有变量
	int curlen;          //相当于结构体的私有变量
	struct mutex lock;  //定义互斥锁
	wait_queue_head_t rq; //等待读队列
	wait_queue_head_t wq; //等待写队列

	struct fasync_struct *pasync_obj;  //实现异步通知机制的数据结构

};

struct mychar_dev gmydev;

int mychar_open(struct inode *pnode, struct file *pfile)
{
	//利用private_data私有变量来指向全局变量结构体地址
	pfile->private_data = (void*)(container_of(pnode->i_cdev,struct mychar_dev,mydev));
    printk("mychar_open is called\n");
    return 0;
}

int mychar_close(struct inode *pnode, struct file *pfile)
{
	struct mychar_dev *pmydev = (struct mychar_dev *)pfile->private_data;

    printk("mychar_close is called\n");
	if(pmydev->pasync_obj != NULL)
	{
		fasync_helper(-1,pfile,0,&pmydev->pasync_obj);  //则调用fasync_helper函数来取消异步通知
	}
    return 0;
}


ssize_t mychar_read(struct file *filp, char __user *pbuf, size_t count, loff_t *ppos)
{
	int ret = 0;
	int size = 0;
	//获取全家变量结构体地址
	struct mychar_dev *pmydev = (struct mychar_dev *)filp->private_data;

	mutex_lock(&pmydev->lock);
	if(pmydev->curlen <= 0)
	{
		if(filp->f_flags & O_NONBLOCK)
		{//非阻塞
			mutex_unlock(&pmydev->lock);
			printk("O_NONBLOCK No Data Read\n");
			return -1;
		}
		else
		{//阻塞
			mutex_unlock(&pmydev->lock);
			ret = wait_event_interruptible(pmydev->rq,pmydev->curlen > 0);
			if(ret)
			{
				printk("Wake up by signal\n");
				return -ERESTARTSYS;
			}
			mutex_lock(&pmydev->lock);
		}
	}

 	if(count > pmydev->curlen)
	{
		size = pmydev->curlen;
	}
	else
	{
		size = count;
	}

	//将内核空间中的数据复制到用户空间
	ret = copy_to_user(pbuf,pmydev->mydef_buf,size);
	if(ret)
	{
		mutex_unlock(&pmydev->lock);
		printk("copy_to_user failed\n");
		return -1;
	}
	//读完之后把后面的内容再拷贝过来,同时更新curlen
	memcpy(pmydev->mydef_buf,pmydev->mydef_buf+size,pmydev->curlen - size);
	pmydev->curlen = pmydev->curlen - size;
	mutex_unlock(&pmydev->lock);
	wake_up_interruptible(&pmydev->wq);

	return size;

}

ssize_t mychar_write (struct file *filp, const char __user *pbuf, size_t count, loff_t *ppos)
{

	int size = 0;
	int ret  = 0;
	//获取全家变量结构体地址
	struct mychar_dev *pmydev = (struct mychar_dev *)filp->private_data;

	mutex_lock(&pmydev->lock);
	if(pmydev->curlen >= BUF_LEN)
	{
		if(filp->f_flags & O_NONBLOCK)
		{
			mutex_unlock(&pmydev->lock);
			printk("O_NONBLOCK Can not write data\n");
			return -1;
		}
		else
		{
			mutex_unlock(&pmydev->lock);  //不能让write函数拿着资源睡眠,否则其他无法拿到资源了
			ret = wait_event_interruptible(pmydev->wq,pmydev->curlen < BUF_LEN);
			if(ret)
			{
				printk("wake up by signal\n");
				return -ERESTARTSYS;
			}
			mutex_lock(&pmydev->lock);
		}
	}

	if(count > BUF_LEN - pmydev->curlen)
	{
		size = BUF_LEN - pmydev->curlen;
	}
	else
	{
		size = count;
	}

	//将用户空间中的数据复制到内核空间中
	ret = copy_from_user(pmydev->mydef_buf + pmydev->curlen, pbuf, size);
	if(ret)
	{
		mutex_unlock(&pmydev->lock);
		printk("copy_from_user failed\n");
		return -1;
	}
    //更新curlen
	pmydev->curlen = pmydev->curlen + size;

	mutex_unlock(&pmydev->lock);
	wake_up_interruptible(&pmydev->rq);

	//数据写成功发送可读信号(同样读函数也可以实现)
	if(pmydev->pasync_obj != NULL)
	{
		kill_fasync(&pmydev->pasync_obj,SIGIO,POLL_IN);
	}
	return size;
}

long mychar_ioctl(struct file *filp, unsigned int cmd,unsigned long arg)
{
    int __user *pret = (int *)arg;
	int maxlen = BUF_LEN;
	int ret = 0;
	struct mychar_dev *pmydev = (struct mychar_dev *)filp->private_data;


	switch(cmd)
	{
		case MYCHAR_IOCTL_GET_MAXLEN:
			ret = copy_to_user(pret,&maxlen,sizeof(int));
			if(ret)
			{
				printk("copy_to_user MAXLEN failed\n");
				return -1;
			}
			break;
		case MYCHAR_IOCTL_GET_CURLEN:
			mutex_lock(&pmydev->lock);
			ret = copy_to_user(pret,&pmydev->curlen,sizeof(int));
			mutex_unlock(&pmydev->lock);
			if(ret)
			{
				printk("copy_to_user CURLEN failed\n");
				return -1;
			}
			break;
		default:
			printk("The cmd is unknow\n");
			return -1;
	}
	return 0;
}

/*该函数与select、poll、epoll_wait函数相对应,协助这些多路监控函数判断本设备是否有数据可读写*/
unsigned int mychar_poll(struct file *filp, poll_table *ptb)
{
	struct mychar_dev *pmydev = (struct mychar_dev *)filp->private_data;
	unsigned int mask = 0;

	//将等待队列头添加至poll_table表中
	poll_wait(filp, &pmydev->rq,ptb);
	poll_wait(filp, &pmydev->wq,ptb);
	
	mutex_lock(&pmydev->lock);
	if(pmydev->curlen > 0) //有数据可读
	{
		mask |= POLLIN | POLLRDNORM;
	}
	if(pmydev->curlen < BUF_LEN) //有空间可写
	{
		mask |= POLLOUT | POLLWRNORM;
	}
	mutex_unlock(&pmydev->lock);

	return mask;
	
	
}

//使用pmydev->pasync_obj作为异步通知对象进行注册
int mychar_fasync(int fd,struct file *filp,int mode)
{
	struct mychar_dev *pmydev = (struct mychar_dev *)filp->private_data;

	return fasync_helper(fd,filp,mode,&pmydev->pasync_obj);
}

//结构体初始化:部分变量赋值初始化
struct file_operations myops = {
    .owner = THIS_MODULE,
    .open = mychar_open,
    .release = mychar_close,
	.read = mychar_read,
	.write = mychar_write,
	.unlocked_ioctl = mychar_ioctl,
	.poll = mychar_poll,
	.fasync = mychar_fasync,
};

int mychar_init(void)
{
    int ret = 0;
    dev_t devno = MKDEV(major, minor);

    /* 申请设备号 */
    ret = register_chrdev_region(devno, mychar_num, "mychar");
    if (ret) {
        ret = alloc_chrdev_region(&devno, minor, mychar_num, "mychar");
        if (ret) {
            printk("get devno failed\n");
            return -1;
        }
		major = MAJOR(devno); // 容易遗漏,注意
    }

    /* 给struct cdev对象指定操作函数集 */
    cdev_init(&gmydev.mydev, &myops);

    /* 将 struct cdev对象添加到内核对应的数据结构里 */
    gmydev.mydev.owner = THIS_MODULE;
    cdev_add(&gmydev.mydev, devno, 1);

	//初始化队列
	init_waitqueue_head(&(gmydev.rq));
	init_waitqueue_head(&(gmydev.wq));
	//初始化信号量
	mutex_init(&gmydev.lock);	

    return 0;
}

void __exit mychar_exit(void)
{
    dev_t devno = MKDEV(major, minor);

    cdev_del(&gmydev.mydev);

    unregister_chrdev_region(devno, mychar_num);
	

}

//表示支持GPL的开源协议
MODULE_LICENSE("GPL");

module_init(mychar_init);
module_exit(mychar_exit);

Makefile

ifeq ($(KERNELRELEASE),)

ifeq ($(ARCH),arm)
KERNELDIR ?= /home/linux/Linux_4412/kernel/linux-3.14
ROOTFS ?= /opt/4412/rootfs
else
KERNELDIR ?= /lib/modules/$(shell uname -r)/build
endif
PWD := $(shell pwd)


modules:
	$(MAKE) -C $(KERNELDIR) M=$(PWD) modules

modules_install:
	$(MAKE) -C $(KERNELDIR) M=$(PWD) modules INSTALL_MOD_PATH=$(ROOTFS) modules_install

clean:
	rm -rf  *.o  *.ko  .*.cmd  *.mod.*  modules.order  Module.symvers   .tmp_versions

else
CONFIG_MODULE_SIG=n
obj-m += mychar.o
obj-m += mychar_poll.o
obj-m += openonce_atomic.o
obj-m += openonce_spinlock.o
obj-m += mychar_sema.o
obj-m += mychar_mutex.o
endif

?testmychar_signal.c(略)同1.1示例

编译,添加到内核模块,测试并发

补充:

生产者消费者问题是操作系统中的一个经典同步问题,用于描述多个线程之间的协作和资源竞争。该问题涉及到两种类型的线程:生产者和消费者。

生产者线程负责生成数据,并将其放入一个共享的缓冲区中。消费者线程从缓冲区中取出数据并进行处理。缓冲区有限,当缓冲区满时,生产者必须等待消费者取走数据;当缓冲区为空时,消费者必须等待生产者生成数据。

为了解决生产者消费者问题,可以使用以下机制:

  1. 互斥锁:用于确保在同一时间只有一个线程能够访问共享缓冲区。
  2. 条件变量:用于线程间的通信。当缓冲区满时,生产者线程将释放该条件变量,使消费者线程进入等待状态,直到缓冲区不再满;当缓冲区为空时,消费者线程将释放该条件变量,使生产者线程进入等待状态,直到缓冲区非空。
  3. 信号量:用于控制生产者和消费者线程的执行顺序和数量。可以使用两个计数信号量来表示缓冲区中的空槽和已占用槽的数量。

使用这些机制,可以编写一个并发程序来解决生产者消费者问题。在实现时需要注意避免线程死锁和饥饿的情况发生,确保线程能够正确地互相通信和协作。

以上是一般的解决方法,具体的实现细节可能会因操作系统和编程语言的不同而有所差异。

3 选择并发控制机制的原则

  • 不允许睡眠的上下文需要采用忙等待类(spin_lock),可以睡眠的上下文可以采用阻塞类。在异常上下文中访问的竞争资源一定采用忙等待类。
  • 临界区操作较长的应用建议采用阻塞类,临界区很短的操作建议采用忙等待类
  • 中断屏蔽仅在有与中断上下文共享资源时使用。
  • 共享资源仅是一个简单整型量时用原子变量
文章来源:https://blog.csdn.net/m0_60718520/article/details/135636954
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。