代码随想录算法训练营第16天 | 104.二叉树的最大深度 + 559.n叉树的最大深度 + 111.二叉树的最小深度 + 222.完全二叉树的节点个数

发布时间:2024年01月11日

今日内容

  • 104.二叉树的最大深度??
  • 559.n叉树的最大深度
  • 111.二叉树的最小深度
  • 222.完全二叉树的节点个数

104.二叉树的最大深度 - Easy

题目链接:力扣-104. 二叉树的最大深度

给定一个二叉树,找出其最大深度。

二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。

说明:?叶子节点是指没有子节点的节点。

思路:递归法

class solution {
public:
    int getdepth(TreeNode* node) {
        if (node == NULL) return 0;
        int leftdepth = getdepth(node->left);       // 左
        int rightdepth = getdepth(node->right);     // 右
        int depth = 1 + max(leftdepth, rightdepth); // 中
        return depth;
    }
    int maxDepth(TreeNode* root) {
        return getdepth(root);
    }
};

559.n叉树的最大深度 - Easy

题目链接:. - 力扣(LeetCode)

??? 给定一个 N 叉树,找到其最大深度。

??? 最大深度是指从根节点到最远叶子节点的最长路径上的节点总数。

??? N 叉树输入按层序遍历序列化表示,每组子节点由空值分隔。

思路:递归法

class solution {
public:
    int maxDepth(Node* root) {
        if (root == 0) return 0;
        int depth = 0;
        for (int i = 0; i < root->children.size(); i++) {
            depth = max (depth, maxDepth(root->children[i]));
        }
        return depth + 1;
    }
};

111.二叉树的最小深度 - Easy

题目链接:力扣-111. 二叉树的最小深度

给定一个二叉树,找出其最小深度。

最小深度是从根节点到最近叶子节点的最短路径上的节点数量。

说明:叶子节点是指没有子节点的节点。

思路:递归法

class Solution {
public:
    int getDepth(TreeNode* node) {
        if (node == NULL) return 0;
        int leftDepth = getDepth(node->left);           // 左
        int rightDepth = getDepth(node->right);         // 右
                                                        // 中
        // 当一个左子树为空,右不为空,这时并不是最低点
        if (node->left == NULL && node->right != NULL) { 
            return 1 + rightDepth;
        }   
        // 当一个右子树为空,左不为空,这时并不是最低点
        if (node->left != NULL && node->right == NULL) { 
            return 1 + leftDepth;
        }
        int result = 1 + min(leftDepth, rightDepth);
        return result;
    }

    int minDepth(TreeNode* root) {
        return getDepth(root);
    }
};

222.完全二叉树的节点个数 - Medium

题目链接: . - 力扣(LeetCode)

??? 给你一棵 完全二叉树 的根节点 root ,求出该树的节点个数。

??? 完全二叉树 的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h 层,则该层包含 1~ 2h 个节点。

思路:普通二叉树的求法,时间复杂度:O(n),空间复杂度:O(log n),算上了递归系统栈占用的空间;利用完全二叉树性质的求法,时间复杂度:O(log n × log n),空间复杂度:O(log n)

?普通二叉树的求法

class Solution {
private:
    int getNodesNum(TreeNode* cur) {
        if (cur == NULL) return 0;
        int leftNum = getNodesNum(cur->left);      // 左
        int rightNum = getNodesNum(cur->right);    // 右
        int treeNum = leftNum + rightNum + 1;      // 中
        return treeNum;
    }
public:
    int countNodes(TreeNode* root) {
        return getNodesNum(root);
    }
};

?利用完全二叉树性质的求法

class Solution {
public:
    int countNodes(TreeNode* root) {
        if (root == nullptr) return 0;
        TreeNode* left = root->left;
        TreeNode* right = root->right;
        int leftDepth = 0, rightDepth = 0; // 这里初始为0是有目的的,为了下面求指数方便
        while (left) {  // 求左子树深度
            left = left->left;
            leftDepth++;
        }
        while (right) { // 求右子树深度
            right = right->right;
            rightDepth++;
        }
        if (leftDepth == rightDepth) {
            return (2 << leftDepth) - 1; // 注意(2<<1) 相当于2^2,所以leftDepth初始为0
        }
        return countNodes(root->left) + countNodes(root->right) + 1;
    }
};

今日总结

今日主要是递归法,迭代法放到二刷,重点是处理好递归三部曲

?

?

?

?

文章来源:https://blog.csdn.net/weixin_52443257/article/details/135537155
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。