目录
边缘计算(Edge Computing)是一种分布式计算范式,它将计算任务和数据存储从中心化的云服务器推向网络的边缘,即接近数据源和用户终端的地方。边缘计算通过在网络的边缘执行计算任务,减少了数据传输的延迟,提高了响应速度和数据处理效率。
简单理解,就是大量的运算放到距离业务发生更近的地方,而不是在客户端采集数据,云端计算,再把结果回传。
举个不恰当的例子,就是javascript很多浏览器效果,是在客户端完成的,服务器端并不知道,真正要提交数据时,服务器端才去运算。这保证的很好的用户体验和速度,同时,数据隐私、安全性,又会受到一定的影响。
真正在应用中,目前更多的场景是混合计算,全靠边缘不行,全上云,也经常会有实际的困难。比如我说几个场景。
比如你搞视频监控,同时使用AI技术做机器视觉分析,例如灾害预警、工人吸烟,被监控区域的网络条件很差,这种需要发现问题,就立刻制止的场景,就很适合做AI和边缘计算的结合。等你一段视频传到云端,都1分钟过去了,一根烟都抽完了。你说是不是?
?
上图仅为示例。
相信大家都用过智能无人零售机器,从2020年开始,最火爆的,就是开门柜了。
微信或者支付宝扫码(扫脸)授权免密支付,开门取物,关门自动结算。这个体验真是特别的爽,而且这种柜子的价格,是传统无人零售机器的三分之一左右。
这是如何实现的?
核心就是AI动态视觉。智能柜从开门一刻起,开始拍摄视频,关门后,中控将视频传输到云端,AI识别商品,基本都是从商品云库中对比,云库中的图片,一般要按要求,拍摄4-6张,不同的角度不等。
初步识别后,如果场景非常简单,购买迅速,无遮挡,则自动就会生成订单,人工后期复核即可。如果比较复杂,置信度不高,将会推给人工,进行人工识别,生成订单。
这其中,时间最长的,就是视频传送这个过程。柜子网络基本上行在10M-20M,下行在100M,视频到云端大家就要30秒-1分钟,这个体验是不太好,消费者感觉半天没来订单,不知道扣费了没有,扣错了没有。
这时,有一些方法就出现了,第一是配合重力、RFID等方式,第二,就是边缘计算。视频直接在柜端就进行识别,生成订单,扣费,10秒内就能收到消费信息,体验非常好,促进客户的二次复购,如果优惠推送的及时,甚至当时就能再去开门购物。
这就是边缘计算最大的魅力!在其他任何场景,都是一样的!
当然,也会有一些问题,不过瑕不掩瑜,随着边缘计算模块价格的降低,这确实是一条提高GMV的新路。