特征分解(Eigenvalue Decomposition)是将一个方阵分解为特征向量和特征值的过程。对于一个 n×n 的方阵A,其特征向量(Eigenvector)v 和特征值(Eigenvalue)
λ 满足以下关系:
这可以写成特征方程的形式:
其中,I是n×n 的单位矩阵,det(?) 表示矩阵的行列式。解特征方程得到的特征值λ是方阵A的特征值,而解特征方程得到的特征向量 v 对应于每个特征值。
特征分解的表达式为:
其中,V 是包含特征向量的矩阵,Λ 是对角矩阵,对角线上的元素是特征值。特征分解的应用非常广泛,例如在主成分分析(PCA)中,特征分解被用来找到数据的主成分。
假设我们有一个 2×2 的矩阵 A 如下:
首先,我们需要解特征方程:
对于矩阵 A,特征方程为:
解这个方程可以得到特征值λ1=5 和λ2=2。