L1-067:洛希极限

发布时间:2023年12月28日

科幻电影《流浪地球》中一个重要的情节是地球距离木星太近时,大气开始被木星吸走,而随着不断接近地木“刚体洛希极限”,地球面临被彻底撕碎的危险。但实际上,这个计算是错误的。

roche.jpg

洛希极限(Roche limit)是一个天体自身的引力与第二个天体造成的潮汐力相等时的距离。当两个天体的距离少于洛希极限,天体就会倾向碎散,继而成为第二个天体的环。它以首位计算这个极限的人爱德华·洛希命名。(摘自百度百科)

大天体密度与小天体的密度的比值开 3 次方后,再乘以大天体的半径以及一个倍数(流体对应的倍数是 2.455,刚体对应的倍数是 1.26),就是洛希极限的值。例如木星与地球的密度比值开 3 次方是 0.622,如果假设地球是流体,那么洛希极限就是?0.622×2.455=1.52701?倍木星半径;但地球是刚体,对应的洛希极限是?0.622×1.26=0.78372?倍木星半径,这个距离比木星半径小,即只有当地球位于木星内部的时候才会被撕碎,换言之,就是地球不可能被撕碎。

本题就请你判断一个小天体会不会被一个大天体撕碎。


输入格式:

输入在一行中给出 3 个数字,依次为:大天体密度与小天体的密度的比值开 3 次方后计算出的值(≤1)、小天体的属性(0 表示流体、1 表示刚体)、两个天体的距离与大天体半径的比值(>1?但不超过 10)。


输出格式:

在一行中首先输出小天体的洛希极限与大天体半径的比值(输出小数点后2位);随后空一格;最后输出?^_^?如果小天体不会被撕碎,否则输出?T_T


输入样例 1:

0.622 0 1.4

输出样例 1:

1.53 T_T

输入样例 2:

0.622 1 1.4

输出样例 2:

0.78 ^_^

程序代码

#include<stdio.h>
int main(){
	double a,c,x;
	int b;
	scanf("%lf %d %lf",&a,&b,&c);
	if(b==0){
		x=a*2.455;
		if(x>c)
		printf("%.2lf T_T",x);
		else
		printf("%.2lf ^_^",x);
	}
	if(b==1){
		x=a*1.26;
		if(x>c)
		printf("%.2lf T_T",x);
		else
		printf("%.2lf ^_^",x);
	}
	return 0;
}

?运行结果

文章来源:https://blog.csdn.net/2301_76828807/article/details/135259881
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。