标题: “It’s not like Jarvis, but it’s pretty close!” – Examining ChatGPT’s Usage among Undergraduate Students in Computer Science
作者: Ishika Joshi, Ritvik Budhiraja, Harshal D Akolekar
摘要: Large language models (LLMs) such as ChatGPT and Google Bard have garnered significant attention in the academic community. Previous research has evaluated these LLMs for various applications such as generating programming exercises and solutions. However, these evaluations have predominantly been conducted by instructors and researchers, not considering the actual usage of LLMs by students. This study adopts a student-first approach to comprehensively understand how undergraduate computer science students utilize ChatGPT, a popular LLM, released by OpenAI. We employ a combination of student surveys and interviews to obtain valuable insights into the benefits, challenges, and suggested improvements related to ChatGPT. Our findings suggest that a majority of students (over 57%) have a convincingly positive outlook towards adopting ChatGPT as an aid in coursework-related tasks. However, our research also highlights various challenges that must be resolved for long-term acceptance of ChatGPT amongst students. The findings from this investigation have broader implications and may be applicable to other LLMs and their role in computing education.
标题: PromptBench: A Unified Library for Evaluation of Large Language Models
作者: Kaijie Zhu, Qinlin Zhao, Hao Chen
摘要: The evaluation of large language models (LLMs) is crucial to assess their performance and mitigate potential security risks. In this paper, we introduce PromptBench, a unified library to evaluate LLMs. It consists of several key components that are easily used and extended by researchers: prompt construction, prompt engineering, dataset and model loading, adversarial prompt attack, dynamic evaluation protocols, and analysis tools. PromptBench is designed to be an open, general, and flexible codebase for research purposes that can facilitate original study in creating new benchmarks, deploying downstream applications, and designing new evaluation protocols. The code is available at: https://github.com/microsoft/promptbench and will be continuously supported.
标题: PeFoMed: Parameter Efficient Fine-tuning on Multimodal Large Language Models for Medical Visual Question Answering
作者: Jinlong He, Pengfei Li, Gang Liu
摘要: Multimodal large language models (MLLMs) represent an evolutionary expansion in the capabilities of traditional large language models, enabling them to tackle challenges that surpass the scope of purely text-based applications. It leverages the knowledge previously encoded within these language models, thereby enhancing their applicability and functionality in the reign of multimodal contexts. Recent works investigate the adaptation of MLLMs to predict free-form answers as a generative task to solve medical visual question answering (Med-VQA) tasks. In this paper, we propose a parameter efficient framework for fine-tuning MLLM specifically tailored to Med-VQA applications, and empirically validate it on a public benchmark dataset. To accurately measure the performance, we employ human evaluation and the results reveal that our model achieves an overall accuracy of 81.9%, and outperforms the GPT-4v model by a significant margin of 26% absolute accuracy on closed-ended questions. The code will be available here: https://github.com/jinlHe/PeFoMed.
标题: Subjective and Objective Analysis of Indian Social Media Video Quality
作者: Sandeep Mishra, Mukul Jha, Alan C. Bovik
摘要: We conducted a large-scale subjective study of the perceptual quality of User-Generated Mobile Video Content on a set of mobile-originated videos obtained from the Indian social media platform ShareChat. The content viewed by volunteer human subjects under controlled laboratory conditions has the benefit of culturally diversifying the existing corpus of User-Generated Content (UGC) video quality datasets. There is a great need for large and diverse UGC-VQA datasets, given the explosive global growth of the visual internet and social media platforms. This is particularly true in regard to videos obtained by smartphones, especially in rapidly emerging economies like India. ShareChat provides a safe and cultural community oriented space for users to generate and share content in their preferred Indian languages and dialects. Our subjective quality study, which is based on this data, offers a boost of cultural, visual, and language diversification to the video quality research community. We expect that this new data resource will also allow for the development of systems that can predict the perceived visual quality of Indian social media videos, to control scaling and compression protocols for streaming, provide better user recommendations, and guide content analysis and processing. We demonstrate the value of the new data resource by conducting a study of leading blind video quality models on it, including a new model, called MoEVA, which deploys a mixture of experts to predict video quality. Both the new LIVE-ShareChat dataset and sample source code for MoEVA are being made freely available to the research community at https://github.com/sandeep-sm/LIVE-SC
标题: Code-Style In-Context Learning for Knowledge-Based Question Answering
作者: Zhijie Nie, Richong Zhang, Zhongyuan Wang
摘要: Current methods for Knowledge-Based Question Answering (KBQA) usually rely on complex training techniques and model frameworks, leading to many limitations in practical applications. Recently, the emergence of In-Context Learning (ICL) capabilities in Large Language Models (LLMs) provides a simple and training-free semantic parsing paradigm for KBQA: Given a small number of questions and their labeled logical forms as demo examples, LLMs can understand the task intent and generate the logic form for a new question. However, current powerful LLMs have little exposure to logic forms during pre-training, resulting in a high format error rate. To solve this problem, we propose a code-style in-context learning method for KBQA, which converts the generation process of unfamiliar logical form into the more familiar code generation process for LLMs. Experimental results on three mainstream datasets show that our method dramatically mitigated the formatting error problem in generating logic forms while realizing a new SOTA on WebQSP, GrailQA, and GraphQ under the few-shot setting. The code and supplementary files are released at https://github.com/Arthurizijar/KB-Coder .
标题: AstroLLaMA-Chat: Scaling AstroLLaMA with Conversational and Diverse Datasets
作者: Ernest Perkowski, Rui Pan, Tuan Dung Nguyen
摘要: We explore the potential of enhancing LLM performance in astronomy-focused question-answering through targeted, continual pre-training. By employing a compact 7B-parameter LLaMA-2 model and focusing exclusively on a curated set of astronomy corpora – comprising abstracts, introductions, and conclusions – we achieve notable improvements in specialized topic comprehension. While general LLMs like GPT-4 excel in broader question-answering scenarios due to superior reasoning capabilities, our findings suggest that continual pre-training with limited resources can still enhance model performance on specialized topics. Additionally, we present an extension of AstroLLaMA: the fine-tuning of the 7B LLaMA model on a domain-specific conversational dataset, culminating in the release of the chat-enabled AstroLLaMA for community use. Comprehensive quantitative benchmarking is currently in progress and will be detailed in an upcoming full paper. The model, AstroLLaMA-Chat, is now available at https://huggingface.co/universeTBD, providing the first open-source conversational AI tool tailored for the astronomy community.
标题: DeepSeek LLM: Scaling Open-Source Language Models with Longtermism
作者: DeepSeek-AI, :, Xiao Bi
摘要: The rapid development of open-source large language models (LLMs) has been truly remarkable. However, the scaling law described in previous literature presents varying conclusions, which casts a dark cloud over scaling LLMs. We delve into the study of scaling laws and present our distinctive findings that facilitate scaling of large scale models in two commonly used open-source configurations, 7B and 67B. Guided by the scaling laws, we introduce DeepSeek LLM, a project dedicated to advancing open-source language models with a long-term perspective. To support the pre-training phase, we have developed a dataset that currently consists of 2 trillion tokens and is continuously expanding. We further conduct supervised fine-tuning (SFT) and Direct Preference Optimization (DPO) on DeepSeek LLM Base models, resulting in the creation of DeepSeek Chat models. Our evaluation results demonstrate that DeepSeek LLM 67B surpasses LLaMA-2 70B on various benchmarks, particularly in the domains of code, mathematics, and reasoning. Furthermore, open-ended evaluations reveal that DeepSeek LLM 67B Chat exhibits superior performance compared to GPT-3.5.
标题: Towards ASR Robust Spoken Language Understanding Through In-Context Learning With Word Confusion Networks
作者: Kevin Everson, Yile Gu, Huck Yang
摘要: In the realm of spoken language understanding (SLU), numerous natural language understanding (NLU) methodologies have been adapted by supplying large language models (LLMs) with transcribed speech instead of conventional written text. In real-world scenarios, prior to input into an LLM, an automated speech recognition (ASR) system generates an output transcript hypothesis, where inherent errors can degrade subsequent SLU tasks. Here we introduce a method that utilizes the ASR system’s lattice output instead of relying solely on the top hypothesis, aiming to encapsulate speech ambiguities and enhance SLU outcomes. Our in-context learning experiments, covering spoken question answering and intent classification, underline the LLM’s resilience to noisy speech transcripts with the help of word confusion networks from lattices, bridging the SLU performance gap between using the top ASR hypothesis and an oracle upper bound. Additionally, we delve into the LLM’s robustness to varying ASR performance conditions and scrutinize the aspects of in-context learning which prove the most influential.
标题: Introducing Bode: A Fine-Tuned Large Language Model for Portuguese Prompt-Based Task
作者: Gabriel Lino Garcia, Pedro Henrique Paiola, Luis Henrique Morelli
摘要: Large Language Models (LLMs) are increasingly bringing advances to Natural Language Processing. However, low-resource languages, those lacking extensive prominence in datasets for various NLP tasks, or where existing datasets are not as substantial, such as Portuguese, already obtain several benefits from LLMs, but not to the same extent. LLMs trained on multilingual datasets normally struggle to respond to prompts in Portuguese satisfactorily, presenting, for example, code switching in their responses. This work proposes a fine-tuned LLaMA 2-based model for Portuguese prompts named Bode in two versions: 7B and 13B. We evaluate the performance of this model in classification tasks using the zero-shot approach with in-context learning, and compare it with other LLMs. Our main contribution is to bring an LLM with satisfactory results in the Portuguese language, as well as to provide a model that is free for research or commercial purposes.
标题: MLLM-Protector: Ensuring MLLM’s Safety without Hurting Performance
作者: Renjie Pi, Tianyang Han, Yueqi Xie
摘要: The deployment of multimodal large language models (MLLMs) has brought forth a unique vulnerability: susceptibility to malicious attacks through visual inputs. We delve into the novel challenge of defending MLLMs against such attacks. We discovered that images act as a “foreign language” that is not considered during alignment, which can make MLLMs prone to producing harmful responses. Unfortunately, unlike the discrete tokens considered in text-based LLMs, the continuous nature of image signals presents significant alignment challenges, which poses difficulty to thoroughly cover the possible scenarios. This vulnerability is exacerbated by the fact that open-source MLLMs are predominantly fine-tuned on limited image-text pairs that is much less than the extensive text-based pretraining corpus, which makes the MLLMs more prone to catastrophic forgetting of their original abilities during explicit alignment tuning. To tackle these challenges, we introduce MLLM-Protector, a plug-and-play strategy combining a lightweight harm detector and a response detoxifier. The harm detector’s role is to identify potentially harmful outputs from the MLLM, while the detoxifier corrects these outputs to ensure the response stipulates to the safety standards. This approach effectively mitigates the risks posed by malicious visual inputs without compromising the model’s overall performance. Our results demonstrate that MLLM-Protector offers a robust solution to a previously unaddressed aspect of MLLM security.
标题: AFSPP: Agent Framework for Shaping Preference and Personality with Large Language Models
作者: Zihong He, Changwang Zhang
摘要: The evolution of Large Language Models (LLMs) has introduced a new paradigm for investigating human behavior emulation. Recent research has employed LLM-based Agents to create a sociological research environment, in which agents exhibit behavior based on the unfiltered characteristics of large language models. However, these studies overlook the iterative development within a human-like setting - Human preferences and personalities are complex, shaped by various factors and subject to ongoing change as a result of environmental and subjective influences. In light of this observation, we propose Agent Framework for Shaping Preference and Personality (AFSPP), exploring the multifaceted impact of social networks and subjective consciousness on LLM-based Agents’ preference and personality formation. With AFSPP, we have, for the first time, successfully replicated several key findings from human personality experiments. And other AFSPP-based experimental results indicate that plan making, sensory perceptions and social networking with subjective information, wield the most pronounced influence on preference shaping. AFSPP can significantly enhance the efficiency and scope of psychological experiments, while yielding valuable insights for Trustworthy Artificial Intelligence research for strategies to prevent undesirable preference and personality development.
标题: Generative Large Language Models are autonomous practitioners of evidence-based medicine
作者: Akhil Vaid, Joshua Lampert, Juhee Lee
摘要: Background: Evidence-based medicine (EBM) is fundamental to modern clinical practice, requiring clinicians to continually update their knowledge and apply the best clinical evidence in patient care. The practice of EBM faces challenges due to rapid advancements in medical research, leading to information overload for clinicians. The integration of artificial intelligence (AI), specifically Generative Large Language Models (LLMs), offers a promising solution towards managing this complexity. Methods: This study involved the curation of real-world clinical cases across various specialties, converting them into .json files for analysis. LLMs, including proprietary models like ChatGPT 3.5 and 4, Gemini Pro, and open-source models like LLaMA v2 and Mixtral-8x7B, were employed. These models were equipped with tools to retrieve information from case files and make clinical decisions similar to how clinicians must operate in the real world. Model performance was evaluated based on correctness of final answer, judicious use of tools, conformity to guidelines, and resistance to hallucinations. Results: GPT-4 was most capable of autonomous operation in a clinical setting, being generally more effective in ordering relevant investigations and conforming to clinical guidelines. Limitations were observed in terms of model ability to handle complex guidelines and diagnostic nuances. Retrieval Augmented Generation made recommendations more tailored to patients and healthcare systems. Conclusions: LLMs can be made to function as autonomous practitioners of evidence-based medicine. Their ability to utilize tooling can be harnessed to interact with the infrastructure of a real-world healthcare system and perform the tasks of patient management in a guideline directed manner. Prompt engineering may help to further enhance this potential and transform healthcare for the clinician and the patient.
作者: Katja Grace, Harlan Stewart, Julia Fabienne Sandkühler
摘要: In the largest survey of its kind, 2,778 researchers who had published in top-tier artificial intelligence (AI) venues gave predictions on the pace of AI progress and the nature and impacts of advanced AI systems The aggregate forecasts give at least a 50% chance of AI systems achieving several milestones by 2028, including autonomously constructing a payment processing site from scratch, creating a song indistinguishable from a new song by a popular musician, and autonomously downloading and fine-tuning a large language model. If science continues undisrupted, the chance of unaided machines outperforming humans in every possible task was estimated at 10% by 2027, and 50% by 2047. The latter estimate is 13 years earlier than that reached in a similar survey we conducted only one year earlier [Grace et al., 2022]. However, the chance of all human occupations becoming fully automatable was forecast to reach 10% by 2037, and 50% as late as 2116 (compared to 2164 in the 2022 survey). Most respondents expressed substantial uncertainty about the long-term value of AI progress: While 68.3% thought good outcomes from superhuman AI are more likely than bad, of these net optimists 48% gave at least a 5% chance of extremely bad outcomes such as human extinction, and 59% of net pessimists gave 5% or more to extremely good outcomes. Between 38% and 51% of respondents gave at least a 10% chance to advanced AI leading to outcomes as bad as human extinction. More than half suggested that “substantial” or “extreme” concern is warranted about six different AI-related scenarios, including misinformation, authoritarian control, and inequality. There was disagreement about whether faster or slower AI progress would be better for the future of humanity. However, there was broad agreement that research aimed at minimizing potential risks from AI systems ought to be prioritized more.
中文摘要: 在同类调查中,2778名在顶级人工智能(AI)场所发表文章的研究人员对人工智能的进展速度以及先进人工智能系统的性质和影响进行了预测。总预测显示,到2028年,人工智能系统至少有50%的机会实现几个里程碑,包括从头开始自主构建支付处理网站,创建与流行音乐人的新歌无法区分的歌曲,以及自主下载和微调大型语言模型。如果科学继续不受干扰,到2027年,无人辅助机器在每一项可能的任务中超过人类的几率估计为10%,到2047年为50%。后一个估计比我们仅一年前进行的类似调查早了13年[Grace et al.,2022]。然而,预计到2037年,所有人类职业完全自动化的几率将达到10%,最晚到2116年将达到50%(而2022年的调查为2164)。大多数受访者对人工智能进步的长期价值表示了极大的不确定性:虽然68.3%的人认为超人人工智能的好结果比坏结果更有可能,但在这些净乐观主义者中,48%的人认为人类灭绝等极坏结果的可能性至少为5%,59%的净悲观主义者认为极好结果的可能性为5%或更多。38%至51%的受访者至少有10%的机会使用先进的人工智能,导致与人类灭绝一样糟糕的结果。超过一半的人表示,有必要对六种不同的人工智能相关场景进行“实质性”或“极端”关注,包括错误信息、独裁控制和不平等。对于更快还是更慢的人工智能进步对人类的未来更好,存在着分歧。然而,人们普遍认为,旨在最大限度地减少人工智能系统潜在风险的研究应该更加优先
[论文下载:]http://arxiv.org/abs/2401.02843v1
标题: Pheme: Efficient and Conversational Speech Generation
作者: Pawe? Budzianowski, Taras Sereda, Tomasz Cichy
摘要: In recent years, speech generation has seen remarkable progress, now achieving one-shot generation capability that is often virtually indistinguishable from real human voice. Integrating such advancements in speech generation with large language models might revolutionize a wide range of applications. However, certain applications, such as assistive conversational systems, require natural and conversational speech generation tools that also operate efficiently in real time. Current state-of-the-art models like VALL-E and SoundStorm, powered by hierarchical neural audio codecs, require large neural components and extensive training data to work well. In contrast, MQTTS aims to build more compact conversational TTS models while capitalizing on smaller-scale real-life conversational speech data. However, its autoregressive nature yields high inference latency and thus limits its real-time usage. In order to mitigate the current limitations of the state-of-the-art TTS models while capitalizing on their strengths, in this work we introduce the Pheme model series that 1) offers compact yet high-performing models, 2) allows for parallel speech generation of 3) natural conversational speech, and 4) it can be trained efficiently on smaller-scale conversational data, cutting data demands by more than 10x but still matching the quality of the autoregressive TTS models. We also show that through simple teacher-student distillation we can meet significant improvements in voice quality for single-speaker setups on top of pretrained Pheme checkpoints, relying solely on synthetic speech generated by much larger teacher models. Audio samples and pretrained models are available online.
摘要: Despite recent progress in text-to-audio (TTA) generation, we show that the state-of-the-art models, such as AudioLDM, trained on datasets with an imbalanced class distribution, such as AudioCaps, are biased in their generation performance. Specifically, they excel in generating common audio classes while underperforming in the rare ones, thus degrading the overall generation performance. We refer to this problem as long-tailed text-to-audio generation. To address this issue, we propose a simple retrieval-augmented approach for TTA models. Specifically, given an input text prompt, we first leverage a Contrastive Language Audio Pretraining (CLAP) model to retrieve relevant text-audio pairs. The features of the retrieved audio-text data are then used as additional conditions to guide the learning of TTA models. We enhance AudioLDM with our proposed approach and denote the resulting augmented system as Re-AudioLDM. On the AudioCaps dataset, Re-AudioLDM achieves a state-of-the-art Frechet Audio Distance (FAD) of 1.37, outperforming the existing approaches by a large margin. Furthermore, we show that Re-AudioLDM can generate realistic audio for complex scenes, rare audio classes, and even unseen audio types, indicating its potential in TTA tasks.
标题: Object-Centric Instruction Augmentation for Robotic Manipulation
作者: Junjie Wen, Yichen Zhu, Minjie Zhu
摘要: Humans interpret scenes by recognizing both the identities and positions of objects in their observations. For a robot to perform tasks such as \enquote{pick and place}, understanding both what the objects are and where they are located is crucial. While the former has been extensively discussed in the literature that uses the large language model to enrich the text descriptions, the latter remains underexplored. In this work, we introduce the \textit{Object-Centric Instruction Augmentation (OCI)} framework to augment highly semantic and information-dense language instruction with position cues. We utilize a Multi-modal Large Language Model (MLLM) to weave knowledge of object locations into natural language instruction, thus aiding the policy network in mastering actions for versatile manipulation. Additionally, we present a feature reuse mechanism to integrate the vision-language features from off-the-shelf pre-trained MLLM into policy networks. Through a series of simulated and real-world robotic tasks, we demonstrate that robotic manipulator imitation policies trained with our enhanced instructions outperform those relying solely on traditional language instructions.
作者: Hilbert Yuen In Lam, Xing Er Ong, Marek Mutwil
摘要: Large Language Models (LLMs), such as ChatGPT, have taken the world by storm and have passed certain forms of the Turing test. However, LLMs are not limited to human language and analyze sequential data, such as DNA, protein, and gene expression. The resulting foundation models can be repurposed to identify the complex patterns within the data, resulting in powerful, multi-purpose prediction tools able to explain cellular systems. This review outlines the different types of LLMs and showcases their recent uses in biology. Since LLMs have not yet been embraced by the plant community, we also cover how these models can be deployed for the plant kingdom.
标题: AI Control: Improving Safety Despite Intentional Subversion
作者: Ryan Greenblatt, Buck Shlegeris, Kshitij Sachan
摘要: As large language models (LLMs) become more powerful and are deployed more autonomously, it will be increasingly important to prevent them from causing harmful outcomes. Researchers have investigated a variety of safety techniques for this purpose, e.g. using models to review the outputs of other models, or red-teaming techniques to surface subtle failure modes. However, researchers have not evaluated whether such techniques still ensure safety if the model is itself intentionally trying to subvert them. In this paper, we develop and evaluate pipelines of safety techniques (“protocols”) that are robust to intentional subversion. We investigate a scenario in which we want to solve a sequence of programming problems, using access to a powerful but untrusted model (in our case, GPT-4), access to a less powerful trusted model (in our case, GPT-3.5), and limited access to high-quality trusted labor. We investigate protocols that aim to never submit solutions containing backdoors, which we operationalize here as logical errors that are not caught by test cases. We investigate a range of protocols and test each against strategies that the untrusted model could use to subvert them. One protocol is what we call trusted editing. This protocol first asks GPT-4 to write code, and then asks GPT-3.5 to rate the suspiciousness of that code. If the code is below some suspiciousness threshold, it is submitted. Otherwise, GPT-3.5 edits the solution to remove parts that seem suspicious and then submits the edited code. Another protocol is untrusted monitoring. This protocol asks GPT-4 to write code, and then asks another instance of GPT-4 whether the code is backdoored, using various techniques to prevent the GPT-4 instances from colluding. These protocols improve substantially on simple baselines.
标题: FlashDecoding++: Faster Large Language Model Inference on GPUs
作者: Ke Hong, Guohao Dai, Jiaming Xu
摘要: As the Large Language Model (LLM) becomes increasingly important in various domains. However, the following challenges still remain unsolved in accelerating LLM inference: (1) Synchronized partial softmax update. The softmax operation requires a synchronized update operation among each partial softmax result, leading to ~20% overheads for the attention computation in LLMs. (2) Under-utilized computation of flat GEMM. The shape of matrices performing GEMM in LLM inference is flat, leading to under-utilized computation and >50% performance loss after padding zeros in previous designs. (3) Performance loss due to static dataflow. Kernel performance in LLM depends on varied input data features, hardware configurations, etc. A single and static dataflow may lead to a 50.25% performance loss for GEMMs of different shapes in LLM inference. We present FlashDecoding++, a fast LLM inference engine supporting mainstream LLMs and hardware back-ends. To tackle the above challenges, FlashDecoding++ creatively proposes: (1) Asynchronized softmax with unified max value. FlashDecoding++ introduces a unified max value technique for different partial softmax computations to avoid synchronization. (2) Flat GEMM optimization with double buffering. FlashDecoding++ points out that flat GEMMs with different shapes face varied bottlenecks. Then, techniques like double buffering are introduced. (3) Heuristic dataflow with hardware resource adaptation. FlashDecoding++ heuristically optimizes dataflow using different hardware resource considering input dynamics. Due to the versatility of optimizations in FlashDecoding++, FlashDecoding++ can achieve up to 4.86x and 2.18x speedup on both NVIDIA and AMD GPUs compared to Hugging Face implementations. FlashDecoding++ also achieves an average speedup of 1.37x compared to state-of-the-art LLM inference engines on mainstream LLMs.
标题: From LLM to Conversational Agent: A Memory Enhanced Architecture with Fine-Tuning of Large Language Models
作者: Na Liu, Liangyu Chen, Xiaoyu Tian
摘要: This paper introduces RAISE (Reasoning and Acting through Scratchpad and Examples), an advanced architecture enhancing the integration of Large Language Models (LLMs) like GPT-4 into conversational agents. RAISE, an enhancement of the ReAct framework, incorporates a dual-component memory system, mirroring human short-term and long-term memory, to maintain context and continuity in conversations. It entails a comprehensive agent construction scenario, including phases like Conversation Selection, Scene Extraction, CoT Completion, and Scene Augmentation, leading to the LLMs Training phase. This approach appears to enhance agent controllability and adaptability in complex, multi-turn dialogues. Our preliminary evaluations in a real estate sales context suggest that RAISE has some advantages over traditional agents, indicating its potential for broader applications. This work contributes to the AI field by providing a robust framework for developing more context-aware and versatile conversational agents.
中文摘要: 本文介绍了RAISE(Reasoning and Acting through Scratchpad and Examples),这是一种高级架构,可增强GPT-4等大型语言模型(LLM)与会话代理的集成。RAISE是ReAct框架的增强,它包含了一个双成分记忆系统,反映了人类的短期和长期记忆,以保持对话的上下文和连续性。它需要一个全面的代理构建场景,包括会话选择、场景提取、CoT完成和场景增强等阶段,从而进入LLM训练阶段。这种方法似乎增强了智能体在复杂、多回合对话中的可控性和适应性。我们在房地产销售背景下的初步评估表明,RAISE与传统代理商相比具有一些优势,这表明其具有更广泛的应用潜力。这项工作为开发更多上下文感知和通用的会话代理提供了一个强大的框架,为人工智能领域做出了贡献
[论文下载:]http://arxiv.org/abs/2401.02777v1
标题: mFACE: Multilingual Summarization with Factual Consistency Evaluation
作者: Roee Aharoni, Shashi Narayan, Joshua Maynez
摘要: Abstractive summarization has enjoyed renewed interest in recent years, thanks to pre-trained language models and the availability of large-scale datasets. Despite promising results, current models still suffer from generating factually inconsistent summaries, reducing their utility for real-world application. Several recent efforts attempt to address this by devising models that automatically detect factual inconsistencies in machine generated summaries. However, they focus exclusively on English, a language with abundant resources. In this work, we leverage factual consistency evaluation models to improve multilingual summarization. We explore two intuitive approaches to mitigate hallucinations based on the signal provided by a multilingual NLI model, namely data filtering and controlled generation. Experimental results in the 45 languages from the XLSum dataset show gains over strong baselines in both automatic and human evaluation.
标题: Detection and Classification of Diabetic Retinopathy using Deep Learning Algorithms for Segmentation to Facilitate Referral Recommendation for Test and Treatment Prediction
作者: Manoj S H, Arya A Bosale
摘要: This research paper addresses the critical challenge of diabetic retinopathy (DR), a severe complication of diabetes leading to potential blindness. The proposed methodology leverages transfer learning with convolutional neural networks (CNNs) for automatic DR detection using a single fundus photograph, demonstrating high effectiveness with a quadratic weighted kappa score of 0.92546 in the APTOS 2019 Blindness Detection Competition. The paper reviews existing literature on DR detection, spanning classical computer vision methods to deep learning approaches, particularly focusing on CNNs. It identifies gaps in the research, emphasizing the lack of exploration in integrating pretrained large language models with segmented image inputs for generating recommendations and understanding dynamic interactions within a web application context.Objectives include developing a comprehensive DR detection methodology, exploring model integration, evaluating performance through competition ranking, contributing significantly to DR detection methodologies, and identifying research gaps.The methodology involves data preprocessing, data augmentation, and the use of a U-Net neural network architecture for segmentation. The U-Net model efficiently segments retinal structures, including blood vessels, hard and soft exudates, haemorrhages, microaneurysms, and the optical disc. High evaluation scores in Jaccard, F1, recall, precision, and accuracy underscore the model’s potential for enhancing diagnostic capabilities in retinal pathology assessment.The outcomes of this research hold promise for improving patient outcomes through timely diagnosis and intervention in the fight against diabetic retinopathy, marking a significant contribution to the field of medical image analysis.
标题: Parameter-Efficient Sparsity Crafting from Dense to Mixture-of-Experts for Instruction Tuning on General Tasks
作者: Haoyuan Wu, Haisheng Zheng, Bei Yu
摘要: Large Language Models (LLMs) have demonstrated considerable proficiency in general natural language processing (NLP) tasks. Instruction tuning, a successful paradigm, enhances the ability of LLMs to follow natural language instructions and exhibit robust generalization across a wide range of tasks. However, these models often encounter performance limitations across multiple tasks due to constrained model capacity. Expanding this capacity during the instruction tuning phase poses significant challenges. To address this issue, we introduce a novel approach, Parameter-Efficient Sparsity Crafting (PESC), which transitions dense models to sparse models using a Mixture of Experts (MoE) architecture. PESC integrates adapters into the MoE layers of sparse models, differentiating experts without altering the individual weights within these layers. This method significantly reduces computational costs and GPU memory requirements, facilitating model capacity expansion through a minimal increase in parameters via the inserted adapters. Our empirical evaluation demonstrates the effectiveness of the PESC method. Using PESC during instruction tuning, our sparse models, dubbed Camelidae outperform all other opensource sparse models and exhibit superior general capabilities compared to GPT3.5.
标题: XUAT-Copilot: Multi-Agent Collaborative System for Automated User Acceptance Testing with Large Language Model
作者: Zhitao Wang, Wei Wang, Zirao Li
摘要: In past years, we have been dedicated to automating user acceptance testing (UAT) process of WeChat Pay, one of the most influential mobile payment applications in China. A system titled XUAT has been developed for this purpose. However, there is still a human-labor-intensive stage, i.e, test scripts generation, in the current system. Therefore, in this paper, we concentrate on methods of boosting the automation level of the current system, particularly the stage of test scripts generation. With recent notable successes, large language models (LLMs) demonstrate significant potential in attaining human-like intelligence and there has been a growing research area that employs LLMs as autonomous agents to obtain human-like decision-making capabilities. Inspired by these works, we propose an LLM-powered multi-agent collaborative system, named XUAT-Copilot, for automated UAT. The proposed system mainly consists of three LLM-based agents responsible for action planning, state checking and parameter selecting, respectively, and two additional modules for state sensing and case rewriting. The agents interact with testing device, make human-like decision and generate action command in a collaborative way. The proposed multi-agent system achieves a close effectiveness to human testers in our experimental studies and gains a significant improvement of Pass@1 accuracy compared with single-agent architecture. More importantly, the proposed system has launched in the formal testing environment of WeChat Pay mobile app, which saves a considerable amount of manpower in the daily development work.
标题: VoroNav: Voronoi-based Zero-shot Object Navigation with Large Language Model
作者: Pengying Wu, Yao Mu, Bingxian Wu
摘要: In the realm of household robotics, the Zero-Shot Object Navigation (ZSON) task empowers agents to adeptly traverse unfamiliar environments and locate objects from novel categories without prior explicit training. This paper introduces VoroNav, a novel semantic exploration framework that proposes the Reduced Voronoi Graph to extract exploratory paths and planning nodes from a semantic map constructed in real time. By harnessing topological and semantic information, VoroNav designs text-based descriptions of paths and images that are readily interpretable by a large language model (LLM). Our approach presents a synergy of path and farsight descriptions to represent the environmental context, enabling the LLM to apply commonsense reasoning to ascertain the optimal waypoints for navigation. Extensive evaluation on the HM3D and HSSD datasets validates that VoroNav surpasses existing ZSON benchmarks in both success rates and exploration efficiency (+2.8% Success and +3.7% SPL on HM3D, +2.6% Success and +3.8% SPL on HSSD). Additionally introduced metrics that evaluate obstacle avoidance proficiency and perceptual efficiency further corroborate the enhancements achieved by our method in ZSON planning.
标题: Training Diffusion Models with Reinforcement Learning
作者: Kevin Black, Michael Janner, Yilun Du
摘要: Diffusion models are a class of flexible generative models trained with an approximation to the log-likelihood objective. However, most use cases of diffusion models are not concerned with likelihoods, but instead with downstream objectives such as human-perceived image quality or drug effectiveness. In this paper, we investigate reinforcement learning methods for directly optimizing diffusion models for such objectives. We describe how posing denoising as a multi-step decision-making problem enables a class of policy gradient algorithms, which we refer to as denoising diffusion policy optimization (DDPO), that are more effective than alternative reward-weighted likelihood approaches. Empirically, DDPO is able to adapt text-to-image diffusion models to objectives that are difficult to express via prompting, such as image compressibility, and those derived from human feedback, such as aesthetic quality. Finally, we show that DDPO can improve prompt-image alignment using feedback from a vision-language model without the need for additional data collection or human annotation. The project’s website can be found at http://rl-diffusion.github.io .
标题: Learning to Prompt with Text Only Supervision for Vision-Language Models
作者: Muhammad Uzair Khattak, Muhammad Ferjad Naeem, Muzammal Naseer
摘要: Foundational vision-language models such as CLIP are becoming a new paradigm in vision, due to their excellent generalization abilities. However, adapting these models for downstream tasks while maintaining their generalization remains a challenge. In literature, one branch of methods adapts CLIP by learning prompts using visual information. While effective, most of these works require labeled data which is not practical, and often struggle to generalize towards new datasets due to over-fitting on the source data. An alternative approach resorts to training-free methods by generating class descriptions from large language models (LLMs) and perform prompt ensembling. However, these methods often generate class specific prompts that cannot be transferred to other classes, which incur higher costs by generating LLM descriptions for each class separately. In this work, we propose to combine the strengths of these both streams of methods by learning prompts using only text data derived from LLMs. As supervised training of prompts is not trivial due to absence of images, we develop a training approach that allows prompts to extract rich contextual knowledge from LLM data. Moreover, with LLM contextual data mapped within the learned prompts, it enables zero-shot transfer of prompts to new classes and datasets potentially cutting the LLM prompt engineering cost. To the best of our knowledge, this is the first work that learns generalized prompts using text only data. We perform extensive evaluations on 4 benchmarks where our method improves over prior ensembling works while being competitive to those utilizing labeled images. Our code and pre-trained models are available at https://github.com/muzairkhattak/ProText.
标题: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations
作者: Qitian Wu, Wentao Zhao, Chenxiao Yang
摘要: Learning representations on large-sized graphs is a long-standing challenge due to the inter-dependence nature involved in massive data points. Transformers, as an emerging class of foundation encoders for graph-structured data, have shown promising performance on small graphs due to its global attention capable of capturing all-pair influence beyond neighboring nodes. Even so, existing approaches tend to inherit the spirit of Transformers in language and vision tasks, and embrace complicated models by stacking deep multi-head attentions. In this paper, we critically demonstrate that even using a one-layer attention can bring up surprisingly competitive performance across node property prediction benchmarks where node numbers range from thousand-level to billion-level. This encourages us to rethink the design philosophy for Transformers on large graphs, where the global attention is a computation overhead hindering the scalability. We frame the proposed scheme as Simplified Graph Transformers (SGFormer), which is empowered by a simple attention model that can efficiently propagate information among arbitrary nodes in one layer. SGFormer requires none of positional encodings, feature/graph pre-processing or augmented loss. Empirically, SGFormer successfully scales to the web-scale graph ogbn-papers100M and yields up to 141x inference acceleration over SOTA Transformers on medium-sized graphs. Beyond current results, we believe the proposed methodology alone enlightens a new technical path of independent interest for building Transformers on large graphs.
标题: Unleashing the Emergent Cognitive Synergy in Large Language Models: A Task-Solving Agent through Multi-Persona Self-Collaboration
作者: Zhenhailong Wang, Shaoguang Mao, Wenshan Wu
摘要: Human intelligence thrives on cognitive synergy, where collaboration among different minds yield superior outcomes compared to isolated individuals. In this work, we propose Solo Performance Prompting (SPP), which transforms a single LLM into a cognitive synergist by engaging in multi-turn self-collaboration with multiple personas. A cognitive synergist is an intelligent agent that collaboratively combines multiple minds’ strengths and knowledge to enhance problem-solving in complex tasks. By dynamically identifying and simulating different personas based on task inputs, SPP unleashes the potential of cognitive synergy in LLMs. Our in-depth analysis shows that assigning multiple fine-grained personas in LLMs improves problem-solving abilities compared to using a single or fixed number of personas. We evaluate SPP on three challenging tasks: Trivia Creative Writing, Codenames Collaborative, and Logic Grid Puzzle, encompassing both knowledge-intensive and reasoning-intensive types. Unlike previous works, such as Chain-of-Thought, that solely enhance the reasoning abilities in LLMs, experimental results demonstrate that SPP effectively reduces factual hallucination, and maintains strong reasoning capabilities. Additionally, comparative experiments show that cognitive synergy only emerges in GPT-4 and does not appear in less capable models, such as GPT-3.5-turbo and Llama2-13b-chat, which draws an interesting analogy to human development. Code, data, and prompts can be found at: https://github.com/MikeWangWZHL/Solo-Performance-Prompting.git.
标题: Emotionally Numb or Empathetic? Evaluating How LLMs Feel Using EmotionBench
作者: Jen-tse Huang, Man Ho Lam, Eric John Li
摘要: Evaluating Large Language Models’ (LLMs) anthropomorphic capabilities has become increasingly important in contemporary discourse. Utilizing the emotion appraisal theory from psychology, we propose to evaluate the empathy ability of LLMs, i.e., how their feelings change when presented with specific situations. After a careful and comprehensive survey, we collect a dataset containing over 400 situations that have proven effective in eliciting the eight emotions central to our study. Categorizing the situations into 36 factors, we conduct a human evaluation involving more than 1,200 subjects worldwide. With the human evaluation results as references, our evaluation includes five LLMs, covering both commercial and open-source models, including variations in model sizes, featuring the latest iterations, such as GPT-4 and LLaMA-2. We find that, despite several misalignments, LLMs can generally respond appropriately to certain situations. Nevertheless, they fall short in alignment with the emotional behaviors of human beings and cannot establish connections between similar situations. Our collected dataset of situations, the human evaluation results, and the code of our testing framework, dubbed EmotionBench, is made openly accessible via https://github.com/CUHK-ARISE/EmotionBench. We aspire to contribute to the advancement of LLMs regarding better alignment with the emotional behaviors of human beings, thereby enhancing their utility and applicability as intelligent assistants.
标题: Location Aware Modular Biencoder for Tourism Question Answering
作者: Haonan Li, Martin Tomko, Timothy Baldwin
摘要: Answering real-world tourism questions that seek Point-of-Interest (POI) recommendations is challenging, as it requires both spatial and non-spatial reasoning, over a large candidate pool. The traditional method of encoding each pair of question and POI becomes inefficient when the number of candidates increases, making it infeasible for real-world applications. To overcome this, we propose treating the QA task as a dense vector retrieval problem, where we encode questions and POIs separately and retrieve the most relevant POIs for a question by utilizing embedding space similarity. We use pretrained language models (PLMs) to encode textual information, and train a location encoder to capture spatial information of POIs. Experiments on a real-world tourism QA dataset demonstrate that our approach is effective, efficient, and outperforms previous methods across all metrics. Enabled by the dense retrieval architecture, we further build a global evaluation baseline, expanding the search space by 20 times compared to previous work. We also explore several factors that impact on the model’s performance through follow-up experiments. Our code and model are publicly available at https://github.com/haonan-li/LAMB.
标题: Self-supervised Pretraining for Decision Foundation Model: Formulation, Pipeline and Challenges
作者: Xiaoqian Liu, Jianbin Jiao, Junge Zhang
摘要: Decision-making is a dynamic process requiring perception, memory, and reasoning to make choices and find optimal policies. Traditional approaches to decision-making suffer from sample efficiency and generalization, while large-scale self-supervised pretraining has enabled fast adaptation with fine-tuning or few-shot learning in language and vision. We thus argue to integrate knowledge acquired from generic large-scale self-supervised pretraining into downstream decision-making problems. We propose Pretrain-Then-Adapt pipeline and survey recent work on data collection, pretraining objectives and adaptation strategies for decision-making pretraining and downstream inference. Finally, we identify critical challenges and future directions for developing decision foundation model with the help of generic and flexible self-supervised pretraining.
标题: LMaaS: Exploring Pricing Strategy of Large Model as a Service for Communication
作者: Panlong Wu, Qi Liu, Yanjie Dong
摘要: The next generation of communication is envisioned to be intelligent communication, that can replace traditional symbolic communication, where highly condensed semantic information considering both source and channel will be extracted and transmitted with high efficiency. The recent popular large models such as GPT4 and the boosting learning techniques lay a solid foundation for the intelligent communication, and prompt the practical deployment of it in the near future. Given the characteristics of “training once and widely use” of those multimodal large language models, we argue that a pay-as-you-go service mode will be suitable in this context, referred to as Large Model as a Service (LMaaS). However, the trading and pricing problem is quite complex with heterogeneous and dynamic customer environments, making the pricing optimization problem challenging in seeking on-hand solutions. In this paper, we aim to fill this gap and formulate the LMaaS market trading as a Stackelberg game with two steps. In the first step, we optimize the seller’s pricing decision and propose an Iterative Model Pricing (IMP) algorithm that optimizes the prices of large models iteratively by reasoning customers’ future rental decisions, which is able to achieve a near-optimal pricing solution. In the second step, we optimize customers’ selection decisions by designing a robust selecting and renting (RSR) algorithm, which is guaranteed to be optimal with rigorous theoretical proof. Extensive experiments confirm the effectiveness and robustness of our algorithms.
标题: Subjectivity in Unsupervised Machine Learning Model Selection
作者: Wanyi Chen, Mary L. Cummings
摘要: Model selection is a necessary step in unsupervised machine learning. Despite numerous criteria and metrics, model selection remains subjective. A high degree of subjectivity may lead to questions about repeatability and reproducibility of various machine learning studies and doubts about the robustness of models deployed in the real world. Yet, the impact of modelers’ preferences on model selection outcomes remains largely unexplored. This study uses the Hidden Markov Model as an example to investigate the subjectivity involved in model selection. We asked 33 participants and three Large Language Models (LLMs) to make model selections in three scenarios. Results revealed variability and inconsistencies in both the participants’ and the LLMs’ choices, especially when different criteria and metrics disagree. Sources of subjectivity include varying opinions on the importance of different criteria and metrics, differing views on how parsimonious a model should be, and how the size of a dataset should influence model selection. The results underscore the importance of developing a more standardized way to document subjective choices made in model selection processes.
标题: Training and Serving System of Foundation Models: A Comprehensive Survey
作者: Jiahang Zhou, Yanyu Chen, Zicong Hong
摘要: Foundation models (e.g., ChatGPT, DALL-E, PengCheng Mind, PanGu-
Σ
\Sigma
Σ) have demonstrated extraordinary performance in key technological areas, such as natural language processing and visual recognition, and have become the mainstream trend of artificial general intelligence. This has led more and more major technology giants to dedicate significant human and financial resources to actively develop their foundation model systems, which drives continuous growth of these models’ parameters. As a result, the training and serving of these models have posed significant challenges, including substantial computing power, memory consumption, bandwidth demands, etc. Therefore, employing efficient training and serving strategies becomes particularly crucial. Many researchers have actively explored and proposed effective methods. So, a comprehensive survey of them is essential for system developers and researchers. This paper extensively explores the methods employed in training and serving foundation models from various perspectives. It provides a detailed categorization of these state-of-the-art methods, including finer aspects such as network, computing, and storage. Additionally, the paper summarizes the challenges and presents a perspective on the future development direction of foundation model systems. Through comprehensive discussion and analysis, it hopes to provide a solid theoretical basis and practical guidance for future research and applications, promoting continuous innovation and development in foundation model systems.
标题: KwaiAgents: Generalized Information-seeking Agent System with Large Language Models
作者: Haojie Pan, Zepeng Zhai, Hao Yuan
摘要: Driven by curiosity, humans have continually sought to explore and understand the world around them, leading to the invention of various tools to satiate this inquisitiveness. Despite not having the capacity to process and memorize vast amounts of information in their brains, humans excel in critical thinking, planning, reflection, and harnessing available tools to interact with and interpret the world, enabling them to find answers efficiently. The recent advancements in large language models (LLMs) suggest that machines might also possess the aforementioned human-like capabilities, allowing them to exhibit powerful abilities even with a constrained parameter count. In this paper, we introduce KwaiAgents, a generalized information-seeking agent system based on LLMs. Within KwaiAgents, we propose an agent system that employs LLMs as its cognitive core, which is capable of understanding a user’s query, behavior guidelines, and referencing external documents. The agent can also update and retrieve information from its internal memory, plan and execute actions using a time-aware search-browse toolkit, and ultimately provide a comprehensive response. We further investigate the system’s performance when powered by LLMs less advanced than GPT-4, and introduce the Meta-Agent Tuning (MAT) framework, designed to ensure even an open-sourced 7B or 13B model performs well among many agent systems. We exploit both benchmark and human evaluations to systematically validate these capabilities. Extensive experiments show the superiority of our agent system compared to other autonomous agents and highlight the enhanced generalized agent-abilities of our fine-tuned LLMs.
标题: Applications of Large Scale Foundation Models for Autonomous Driving
作者: Yu Huang, Yue Chen, Zhu Li
摘要: Since DARPA Grand Challenges (rural) in 2004/05 and Urban Challenges in 2007, autonomous driving has been the most active field of AI applications. Recently powered by large language models (LLMs), chat systems, such as chatGPT and PaLM, emerge and rapidly become a promising direction to achieve artificial general intelligence (AGI) in natural language processing (NLP). There comes a natural thinking that we could employ these abilities to reformulate autonomous driving. By combining LLM with foundation models, it is possible to utilize the human knowledge, commonsense and reasoning to rebuild autonomous driving systems from the current long-tailed AI dilemma. In this paper, we investigate the techniques of foundation models and LLMs applied for autonomous driving, categorized as simulation, world model, data annotation and planning or E2E solutions etc.
标题: Large Language Models for Social Networks: Applications, Challenges, and Solutions
作者: Jingying Zeng, Richard Huang, Waleed Malik
摘要: Large Language Models (LLMs) are transforming the way people generate, explore, and engage with content. We study how we can develop LLM applications for online social networks. Despite LLMs’ successes in other domains, it is challenging to develop LLM-based products for social networks for numerous reasons, and it has been relatively under-reported in the research community. We categorize LLM applications for social networks into three categories. First is knowledge tasks where users want to find new knowledge and information, such as search and question-answering. Second is entertainment tasks where users want to consume interesting content, such as getting entertaining notification content. Third is foundational tasks that need to be done to moderate and operate the social networks, such as content annotation and LLM monitoring. For each task, we share the challenges we found, solutions we developed, and lessons we learned. To the best of our knowledge, this is the first comprehensive paper about developing LLM applications for social networks.
标题: LLM in a flash: Efficient Large Language Model Inference with Limited Memory
作者: Keivan Alizadeh, Iman Mirzadeh, Dmitry Belenko
摘要: Large language models (LLMs) are central to modern natural language processing, delivering exceptional performance in various tasks. However, their substantial computational and memory requirements present challenges, especially for devices with limited DRAM capacity. This paper tackles the challenge of efficiently running LLMs that exceed the available DRAM capacity by storing the model parameters in flash memory, but bringing them on demand to DRAM. Our method involves constructing an inference cost model that takes into account the characteristics of flash memory, guiding us to optimize in two critical areas: reducing the volume of data transferred from flash and reading data in larger, more contiguous chunks. Within this hardware-informed framework, we introduce two principal techniques. First, “windowing” strategically reduces data transfer by reusing previously activated neurons, and second, “row-column bundling”, tailored to the sequential data access strengths of flash memory, increases the size of data chunks read from flash memory. These methods collectively enable running models up to twice the size of the available DRAM, with a 4-5x and 20-25x increase in inference speed compared to naive loading approaches in CPU and GPU, respectively. Our integration of sparsity awareness, context-adaptive loading, and a hardware-oriented design paves the way for effective inference of LLMs on devices with limited memory.
标题: Memory, Consciousness and Large Language Model
作者: Jitang Li, Jinzheng Li
摘要: With the development in cognitive science and Large Language Models (LLMs), increasing connections have come to light between these two distinct fields. Building upon these connections, we propose a conjecture suggesting the existence of a duality between LLMs and Tulving’s theory of memory. We identify a potential correspondence between Tulving’s synergistic ecphory model (SEM) of retrieval and the emergent abilities observed in LLMs, serving as supporting evidence for our conjecture. Furthermore, we speculate that consciousness may be considered a form of emergent ability based on this duality. We also discuss how other theories of consciousness intersect with our research.
摘要: Automated Planning and Scheduling is among the growing areas in Artificial Intelligence (AI) where mention of LLMs has gained popularity. Based on a comprehensive review of 126 papers, this paper investigates eight categories based on the unique applications of LLMs in addressing various aspects of planning problems: language translation, plan generation, model construction, multi-agent planning, interactive planning, heuristics optimization, tool integration, and brain-inspired planning. For each category, we articulate the issues considered and existing gaps. A critical insight resulting from our review is that the true potential of LLMs unfolds when they are integrated with traditional symbolic planners, pointing towards a promising neuro-symbolic approach. This approach effectively combines the generative aspects of LLMs with the precision of classical planning methods. By synthesizing insights from existing literature, we underline the potential of this integration to address complex planning challenges. Our goal is to encourage the ICAPS community to recognize the complementary strengths of LLMs and symbolic planners, advocating for a direction in automated planning that leverages these synergistic capabilities to develop more advanced and intelligent planning systems.
标题: LLaMA Pro: Progressive LLaMA with Block Expansion
作者: Chengyue Wu, Yukang Gan, Yixiao Ge
摘要: Humans generally acquire new skills without compromising the old; however, the opposite holds for Large Language Models (LLMs), e.g., from LLaMA to CodeLLaMA. To this end, we propose a new post-pretraining method for LLMs with an expansion of Transformer blocks. We tune the expanded blocks using only new corpus, efficiently and effectively improving the model’s knowledge without catastrophic forgetting. In this paper, we experiment on the corpus of code and math, yielding LLaMA Pro-8.3B, a versatile foundation model initialized from LLaMA2-7B, excelling in general tasks, programming, and mathematics. LLaMA Pro and its instruction-following counterpart (LLaMA Pro-Instruct) achieve advanced performance among various benchmarks, demonstrating superiority over existing open models in the LLaMA family and the immense potential of reasoning and addressing diverse tasks as an intelligent agent. Our findings provide valuable insights into integrating natural and programming languages, laying a solid foundation for developing advanced language agents that operate effectively in various environments.
摘要: Foundational models with billions of parameters which have been trained on large corpora of data have demonstrated non-trivial skills in a variety of domains. However, due to their monolithic structure, it is challenging and expensive to augment them or impart new skills. On the other hand, due to their adaptation abilities, several new instances of these models are being trained towards new domains and tasks. In this work, we study the problem of efficient and practical composition of existing foundation models with more specific models to enable newer capabilities. To this end, we propose CALM – Composition to Augment Language Models – which introduces cross-attention between models to compose their representations and enable new capabilities. Salient features of CALM are: (i) Scales up LLMs on new tasks by ‘re-using’ existing LLMs along with a few additional parameters and data, (ii) Existing model weights are kept intact, and hence preserves existing capabilities, and (iii) Applies to diverse domains and settings. We illustrate that augmenting PaLM2-S with a smaller model trained on low-resource languages results in an absolute improvement of up to 13% on tasks like translation into English and arithmetic reasoning for low-resource languages. Similarly, when PaLM2-S is augmented with a code-specific model, we see a relative improvement of 40% over the base model for code generation and explanation tasks – on-par with fully fine-tuned counterparts.
标题: 3D Open-Vocabulary Panoptic Segmentation with 2D-3D Vision-Language Distillation
作者: Zihao Xiao, Longlong Jing, Shangxuan Wu
摘要: 3D panoptic segmentation is a challenging perception task, which aims to predict both semantic and instance annotations for 3D points in a scene. Although prior 3D panoptic segmentation approaches have achieved great performance on closed-set benchmarks, generalizing to novel categories remains an open problem. For unseen object categories, 2D open-vocabulary segmentation has achieved promising results that solely rely on frozen CLIP backbones and ensembling multiple classification outputs. However, we find that simply extending these 2D models to 3D does not achieve good performance due to poor per-mask classification quality on novel categories. In this paper, we propose the first method to tackle 3D open-vocabulary panoptic segmentation. Our model takes advantage of the fusion between learnable LiDAR features and dense frozen vision CLIP features, using a single classification head to make predictions for both base and novel classes. To further improve the classification performance on novel classes and leverage the CLIP model, we propose two novel loss functions: object-level distillation loss and voxel-level distillation loss. Our experiments on the nuScenes and SemanticKITTI datasets show that our method outperforms strong baselines by a large margin.
标题: One Shot Learning as Instruction Data Prospector for Large Language Models
作者: Yunshui Li, Binyuan Hui, Xiaobo Xia
摘要: Aligning large language models(LLMs) with human is a critical step in effectively utilizing their pre-trained capabilities across a wide array of language tasks. Current instruction tuning practices often rely on expanding dataset size without a clear strategy for ensuring data quality, which can inadvertently introduce noise and degrade model performance. To address this challenge, we introduce Nuggets, a novel and efficient methodology that employs one shot learning to select high-quality instruction data from expansive datasets. Nuggets assesses the potential of individual instruction examples to act as effective one shot examples, thereby identifying those that can significantly enhance diverse task performance. Nuggets utilizes a scoring system based on the impact of candidate examples on the perplexity of a diverse anchor set, facilitating the selection of the most beneficial data for instruction tuning. Through rigorous testing on two benchmarks, including MT-Bench and Alpaca-Eval, we demonstrate that instruction tuning with the top 1% of Nuggets-curated examples substantially outperforms conventional methods that use the full dataset. These findings advocate for a data selection paradigm that prioritizes quality, offering a more efficient pathway to align LLMs with humans.
标题: Vietnamese Poem Generation & The Prospect Of Cross-Language Poem-To-Poem Translation
作者: Triet Minh Huynh, Quan Le Bao
摘要: Poetry generation has been a challenging task in the field of Natural Language Processing, as it requires the model to understand the nuances of language, sentiment, and style. In this paper, we propose using Large Language Models to generate Vietnamese poems of various genres from natural language prompts, thereby facilitating an intuitive process with enhanced content control. Our most efficacious model, the GPT-3 Babbage variant, achieves a custom evaluation score of 0.8, specifically tailored to the “luc bat” genre of Vietnamese poetry. Furthermore, we also explore the idea of paraphrasing poems into normal text prompts and yield a relatively high score of 0.781 in the “luc bat” genre. This experiment presents the potential for cross-Language poem-to-poem translation with translated poems as the inputs while concurrently maintaining complete control over the generated content.
标题: SPEER: Sentence-Level Planning of Long Clinical Summaries via Embedded Entity Retrieval
作者: Griffin Adams, Jason Zucker, Noémie Elhadad
摘要: Clinician must write a lengthy summary each time a patient is discharged from the hospital. This task is time-consuming due to the sheer number of unique clinical concepts covered in the admission. Identifying and covering salient entities is vital for the summary to be clinically useful. We fine-tune open-source LLMs (Mistral-7B-Instruct and Zephyr-7B-\b{eta}) on the task and find that they generate incomplete and unfaithful summaries. To increase entity coverage, we train a smaller, encoder-only model to predict salient entities, which are treated as content-plans to guide the LLM. To encourage the LLM to focus on specific mentions in the source notes, we propose SPEER: Sentence-level Planning via Embedded Entity Retrieval. Specifically, we mark each salient entity span with special “{{ }}” boundary tags and instruct the LLM to retrieve marked spans before generating each sentence. Sentence-level planning acts as a form of state tracking in that the model is explicitly recording the entities it uses. We fine-tune Mistral and Zephyr variants on a large-scale, diverse dataset of ~167k in-patient hospital admissions and evaluate on 3 datasets. SPEER shows gains in both coverage and faithfulness metrics over non-guided and guided baselines.
标题: Towards a Foundation Purchasing Model: Pretrained Generative Autoregression on Transaction Sequences
作者: Piotr Skalski, David Sutton, Stuart Burrell
摘要: Machine learning models underpin many modern financial systems for use cases such as fraud detection and churn prediction. Most are based on supervised learning with hand-engineered features, which relies heavily on the availability of labelled data. Large self-supervised generative models have shown tremendous success in natural language processing and computer vision, yet so far they haven’t been adapted to multivariate time series of financial transactions. In this paper, we present a generative pretraining method that can be used to obtain contextualised embeddings of financial transactions. Benchmarks on public datasets demonstrate that it outperforms state-of-the-art self-supervised methods on a range of downstream tasks. We additionally perform large-scale pretraining of an embedding model using a corpus of data from 180 issuing banks containing 5.1 billion transactions and apply it to the card fraud detection problem on hold-out datasets. The embedding model significantly improves value detection rate at high precision thresholds and transfers well to out-of-domain distributions.
标题: Beyond Extraction: Contextualising Tabular Data for Efficient Summarisation by Language Models
作者: Uday Allu, Biddwan Ahmed, Vishesh Tripathi
摘要: The conventional use of the Retrieval-Augmented Generation (RAG) architecture has proven effective for retrieving information from diverse documents. However, challenges arise in handling complex table queries, especially within PDF documents containing intricate tabular structures.This research introduces an innovative approach to enhance the accuracy of complex table queries in RAG-based systems. Our methodology involves storing PDFs in the retrieval database and extracting tabular content separately. The extracted tables undergo a process of context enrichment, concatenating headers with corresponding values. To ensure a comprehensive understanding of the enriched data, we employ a fine-tuned version of the Llama-2-chat language model for summarisation within the RAG architecture. Furthermore, we augment the tabular data with contextual sense using the ChatGPT 3.5 API through a one-shot prompt. This enriched data is then fed into the retrieval database alongside other PDFs. Our approach aims to significantly improve the precision of complex table queries, offering a promising solution to a longstanding challenge in information retrieval.
标题: DIALIGHT: Lightweight Multilingual Development and Evaluation of Task-Oriented Dialogue Systems with Large Language Models
作者: Songbo Hu, Xiaobin Wang, Zhangdie Yuan
摘要: We present DIALIGHT, a toolkit for developing and evaluating multilingual Task-Oriented Dialogue (ToD) systems which facilitates systematic evaluations and comparisons between ToD systems using fine-tuning of Pretrained Language Models (PLMs) and those utilising the zero-shot and in-context learning capabilities of Large Language Models (LLMs). In addition to automatic evaluation, this toolkit features (i) a secure, user-friendly web interface for fine-grained human evaluation at both local utterance level and global dialogue level, and (ii) a microservice-based backend, improving efficiency and scalability. Our evaluations reveal that while PLM fine-tuning leads to higher accuracy and coherence, LLM-based systems excel in producing diverse and likeable responses. However, we also identify significant challenges of LLMs in adherence to task-specific instructions and generating outputs in multiple languages, highlighting areas for future research. We hope this open-sourced toolkit will serve as a valuable resource for researchers aiming to develop and properly evaluate multilingual ToD systems and will lower, currently still high, entry barriers in the field.