【JVM】内存结构

发布时间:2024年01月11日

Java 虚拟机的内存空间

Java 虚拟机的内存空间分为 5 个部分:
程序计数器
Java 虚拟机栈
本地方法栈

方法区

在这里插入图片描述
JDK 1.8 同 JDK 1.7 比,最大的差别就是:元数据区取代了永久代。元空间的本质和永久代类似,都是对 JVM 规范中方法区的实现。不过元空间与永久代之间最大的区别在于:元数据空间并不在虚拟机中,而是使用本地内存。

程序计数器(PC 寄存器)

程序计数器的定义
程序计数器是一块较小的内存空间,是当前线程正在执行的那条字节码指令的地址。若当前线程正在执行的是一个本地方法,那么此时程序计数器为 Undefined。

程序计数器的作用
字节码解释器通过改变程序计数器来依次读取指令,从而实现代码的流程控制。

在多线程情况下,程序计数器记录的是当前线程执行的位置,从而当线程切换回来时,就知道上次线程执行到哪了。

程序计数器的特点
是一块较小的内存空间。

是否线程私有?
线程私有,每条线程都有自己的程序计数器。

生命周期
随着线程的创建而创建,随着线程的结束而销毁。是唯一一个不会出现 OutOfMemoryError 的内存区域。

Java 虚拟机栈(Java 栈)

Java 虚拟机栈的定义
Java 虚拟机栈是描述 Java 方法运行过程的内存模型。

Java 虚拟机栈会为每一个即将运行的 Java 方法创建一块叫做“栈帧”的区域,用于存放该方法运行过程中的一些信息,如:

局部变量表
操作数栈
动态链接
方法出口信息

在这里插入图片描述
压栈出栈过程
当方法运行过程中需要创建局部变量时,就将局部变量的值存入栈帧中的局部变量表中。

Java 虚拟机栈的栈顶的栈帧是当前正在执行的活动栈,也就是当前正在执行的方法,PC 寄存器也会指向这个地址。只有这个活动的栈帧的本地变量可以被操作数栈使用,当在这个栈帧中调用另一个方法,与之对应的栈帧又会被创建,新创建的栈帧压入栈顶,变为当前的活动栈帧。

方法结束后,当前栈帧被移出,栈帧的返回值变成新的活动栈帧中操作数栈的一个操作数。如果没有返回值,那么新的活动栈帧中操作数栈的操作数没有变化。

由于 Java 虚拟机栈是与线程对应的,数据不是线程共享的(也就是线程私有的),因此不用关心数据一致性问题,也不会存在同步锁的问题。

Java 虚拟机栈的特点
运行速度特别快,仅仅次于 PC 寄存器。

局部变量表随着栈帧的创建而创建,它的大小在编译时确定,创建时只需分配事先规定的大小即可。在方法运行过程中,局部变量表的大小不会发生改变。

Java 虚拟机栈会出现两种异常:StackOverFlowError 和 OutOfMemoryError。 StackOverFlowError 若 Java 虚拟机栈的大小不允许动态扩展,那么当线程请求栈的深度超过当前 Java 虚拟机栈的最大深度时,抛出 StackOverFlowError 异常。 OutOfMemoryError 若允许动态扩展,那么当线程请求栈时内存用完了,无法再动态扩展时,抛出 OutOfMemoryError 异常。

Java 虚拟机栈也是线程私有,随着线程创建而创建,随着线程的结束而销毁。

出现 StackOverFlowError 时,内存空间可能还有很多。 常见的运行时异常有:
NullPointerException - 空指针引用异常
ClassCastException - 类型强制转换异
IllegalArgumentException - 传递非法参数异常
ArithmeticException - 算术运算异常
ArrayStoreException - 向数组中存放与声明类型不兼容对象异常
IndexOutOfBoundsException - 下标越界异常
NegativeArraySizeException - 创建一个大小为负数的数组错误异常
NumberFormatException - 数字格式异常
SecurityException - 安全异常
UnsupportedOperationException - 不支持的操作异常

本地方法栈(C 栈)

本地方法栈的定义
本地方法栈是为 JVM 运行 Native 方法准备的空间,由于很多 Native 方法都是用 C 语言实现的,所以它通常又叫 C 栈。它与 Java 虚拟机栈实现的功能类似,只不过本地方法栈是描述本地方法运行过程的内存模型。

栈帧变化过程
本地方法被执行时,在本地方法栈也会创建一块栈帧,用于存放该方法的局部变量表、操作数栈、动态链接、方法出口信息等。

方法执行结束后,相应的栈帧也会出栈,并释放内存空间。也会抛出 StackOverFlowError 和 OutOfMemoryError 异常。

如果 Java 虚拟机本身不支持 Native 方法,或是本身不依赖于传统栈,那么可以不提供本地方法栈。如果支持本地方法栈,那么这个栈一般会在线程创建的时候按线程分配

堆的定义
堆是用来存放对象的内存空间,几乎所有的对象都存储在堆中。
在这里插入图片描述
在jvm的堆内存中有三个区域:
1、年轻代:用于存放新产生的对象。(一个Eden 和 两个survivor)
2、老年代:用于存放被长期引用的对象。年轻代在垃圾回收多次都没有被GC回收的时候就会被放到老年代,以及一些大的对象(比如缓存,这里的缓存是弱引用),这些大对象可以不进入年轻代就直接进入老年代
3、持久带:用于存放Class,method元信息(1.8之后改为元空间)

元空间
JDK1.8之后,取消perm永久代,转而用元空间代替
元空间的本质和永久代类似,都是对JVM规范中方法区的实现。不过元空间与永久代之间最大的区别在于:元空间并不在虚拟机中,而是使用本地内存。并且可以动态扩容。

堆的特点
1、线程共享,整个 Java 虚拟机只有一个堆,所有的线程都访问同一个堆。2、而程序计数器、Java 虚拟机栈、本地方法栈都是一个线程对应一个。
3、在虚拟机启动时创建。
4、是垃圾回收的主要场所。
5、堆可分为新生代(Eden 区:From Survior,To Survivor)、老年代。
6、Java 虚拟机规范规定,堆可以处于物理上不连续的内存空间中,但在逻辑上它应该被视为连续的。
7、关于 Survivor s0,s1 区: 复制之后有交换,谁空谁是 to。

不同的区域存放不同生命周期的对象,这样可以根据不同的区域使用不同的垃圾回收算法,更具有针对性。

堆的大小既可以固定也可以扩展,但对于主流的虚拟机,堆的大小是可扩展的,因此当线程请求分配内存,但堆已满,且内存已无法再扩展时,就抛出 OutOfMemoryError 异常。

内存分配策略
1、 优先在Eden区分配
在大多数情况下, 对象在新生代Eden区中分配, 当Eden区没有足够空间分配时, VM发起一次Minor GC, 将Eden区和其中一块Survivor区内尚存活的对象放入另一块Survivor区域, 如果在Minor GC期间发现新生代存活对象无法放入空闲的Survivor区, 则会通过空间分配担保机制使对象提前进入老年代(空间分配担保见下).

2、大对象直接进入老年代
Serial和ParNew两款收集器提供了-XX:PretenureSizeThreshold的参数, 令大于该值的大对象直接在老年代分配, 这样做的目的是避免在Eden区和Survivor区之间产生大量的内存复制(大对象一般指 需要大量连续内存的Java对象, 如很长的字符串和数组), 因此大对象容易导致还有不少空闲内存就提前触发GC以获取足够的连续空间.

3、长期存活对象进入老年区
如果对象在Eden出生并经过第一次Minor GC后仍然存活,并且能被Survivor容纳的话,将被移动到Survivor空间中,并将对象年龄设为1,对象在Survivor区中每熬过一次 Minor GC,年龄就增加1,当它的年龄增加到一定程度(默认为15)_时,就会被晋升到老年代中。

4、对象年龄动态判定
如果在 Survivor空间中相同年龄所有对象大小的综合大于Survivor空间的一半,年龄大于或等于该年龄的对象就可以直接进入老年代

5、空间分配担保
在发生Minor GC之前,虚拟机会先检查老年代最大可用的连续空间是否大于新生代所有对象总空间,如果这个条件成立,那么Minor GC可以确保是安全的。如果不成立,则虚拟机会查看HandlePromotionFailure设置值是否允许担保失败。如果允许,那么会继续检查老年代最大可用的连续空间是否大于历次晋升到老年代对象的平均大小,如果大于,将尝试着进行一次Minor GC,尽管这次Minor GC是有风险的,如果担保失败则会进行一次Full GC;如果小于,或者HandlePromotionFailure设置不允许冒险,那这时也要改为进行一次Full GC。

HotSpot默认是开启空间分配担保的。

GC执行的机制
由于对象进行了分代处理,因此垃圾回收区域、时间也不一样。GC有两种类型:Minor GC和Full GC。

Minor GC(young GC)

一般情况下,当新对象生成,并且在Eden申请空间失败时,就会触发Minor GC,对Eden区域进行GC,清除非存活对象,并且把尚且存活的对象移动到Survivor区。然后整理Survivor的两个区。这种方式的GC是对年轻代的Eden区进行,不会影响到年老代。因为大部分对象都是从Eden区开始的,同时Eden区不会分配的很大,所以Eden区的GC会频繁进行。因而,一般在这里需要使用速度快、效率高的算法,使Eden去能尽快空闲出来。

Full GC

对整个堆进行整理,包括Young、Tenured和Perm。Full GC因为需要对整个堆进行回收,所以比Minor GC要慢,因此应该尽可能减少Full GC的次数。在对JVM调优的过程中,很大一部分工作就是对于FullGC的调节。有如下原因可能导致Full GC:
1.年老代(Tenured)被写满
2.持久代(Perm)被写满
3.System.gc()被显示调用
4.上一次GC之后Heap的各域分配策略动态变化

Full GC /Major GC 触发条件
显示调用System.gc(),老年代的空间不够,方法区的空间不够等都会触发 Full GC,同时对新生代和老年代回收,FUll GC 的 STW 的时间最长,应该要避免
在出现 Major GC 之前,会先触发 Minor GC,如果老年代的空间还是不够就会触发 Major GC,STW 的时间长于 Minor GC

对象分配过程
1、new 的对象先放在 Eden 区,大小有限制
2、如果创建新对象时,Eden 空间填满了,就会触发 Minor GC,将 Eden 不再被其他对象引用的对象进行销毁,再加载新的对象放到 Eden 区,特别注意的是 Survivor 区满了是不会触发 Minor GC 的,而是 Eden 空间填满了,Minor GC 才顺便清理 Survivor 区
3、将 Eden 中剩余的对象移到 Survivor0 区 *再次触发垃圾回收,此时上次 Survivor 下来的,放在 Survivor0 区的,如果没有回收,就会放到 Survivor1 区
4、再次经历垃圾回收,又会将幸存者重新放回 Survivor0 区,依次类推
5、默认是 15 次的循环,超过 15 次,则会将幸存者区幸存下来的转去老年区 jvm 参数设置次数 : -XX:MaxTenuringThreshold=N 进行设置
6、频繁在新生区收集,很少在养老区收集,几乎不在永久区/元空间搜集

方法区

方法区的定义
Java 虚拟机规范中定义方法区是堆的一个逻辑部分。方法区存放以下信息:
1、已经被虚拟机加载的类信息
2、常量
3、静态变量
4、即时编译器编译后的代码

方法区的特点
线程共享。 方法区是堆的一个逻辑部分,因此和堆一样,都是线程共享的。整个虚拟机中只有一个方法区。 永久代。 方法区中的信息一般需要长期存在,而且它又是堆的逻辑分区,因此用堆的划分方法,把方法区称为“永久代”。
内存回收效率低。 方法区中的信息一般需要长期存在,回收一遍之后可能只有少量信息无效。主要回收目标是:对常量池的回收;对类型的卸载。
Java 虚拟机规范对方法区的要求比较宽松。 和堆一样,允许固定大小,也允许动态扩展,还允许不实现垃圾回收。

运行时常量池
方法区中存放:类信息、常量、静态变量、即时编译器编译后的代码。常量就存放在运行时常量池中。

当类被 Java 虚拟机加载后, .class 文件中的常量就存放在方法区的运行时常量池中。而且在运行期间,可以向常量池中添加新的常量。如 String 类的 intern() 方法就能在运行期间向常量池中添加字符串常量。

在这里插入图片描述

直接内存(堆外内存)

直接内存是除 Java 虚拟机之外的内存,但也可能被 Java 使用。

操作直接内存
在 NIO 中引入了一种基于通道和缓冲的 IO 方式。它可以通过调用本地方法直接分配 Java 虚拟机之外的内存,然后通过一个存储在堆中的DirectByteBuffer对象直接操作该内存,而无须先将外部内存中的数据复制到堆中再进行操作,从而提高了数据操作的效率。

直接内存的大小不受 Java 虚拟机控制,但既然是内存,当内存不足时就会抛出 OutOfMemoryError 异常。

直接内存与堆内存比较
直接内存申请空间耗费更高的性能
直接内存读取 IO 的性能要优于普通的堆内存
直接内存作用链: 本地 IO -> 直接内存 -> 本地 IO
堆内存作用链:本地 IO -> 直接内存 -> 非直接内存 -> 直接内存 -> 本地 IO

服务器管理员在配置虚拟机参数时,会根据实际内存设置-Xmx等参数信息,但经常忽略直接内存,使得各个内存区域总和大于物理内存限制,从而导致动态扩展时出现OutOfMemoryError异常。
在这里插入图片描述

文章来源:https://blog.csdn.net/xiazi0721/article/details/135528099
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。