本节要讨论的是当给定 n(n>=0)个结点时,可以构建多少种形态不同的树。
如果两棵树中各个结点的位置都一一对应,可以说这两棵树相似。如果两棵树不仅相似,而且对应结点上的数据也相同,就可以说这两棵树等价。本节中,形态不同的树指的是互不相似的树。
前面介绍过,对于任意一棵普通树,通过孩子兄弟表示法的转化,都可以找到唯一的一棵二叉树与之对应。所以本节研究的题目也可以转化成:n 个结点可以构建多少种形态不同的二叉树。
每一棵普通树对应的都是一棵没有右子树的二叉树,所以对于 n 个结点的树来说,树的形态改变是因为除了根结点之外的其它结点改变形态得到的,所以,n 个结点构建的形态不同的树与之对应的是 n-1 个结点构建的形态不同的二叉树。
如果 tn 表示 n 个结点构建的形态不同的树的数量,bn 表示 n 个结点构建的形态不同的二叉树的数量,则两者之间有这样的关系:tn=bn-1
。
统计 n-1 个结点可以构建出多少形态不同的二叉树,有两种计算方案。
最直接的一种方法就是推理。当 n=0 时,只能构建一棵空树;当 n=2 时,可以构建 2 棵形态不同的二叉树,如图 1(A);当 n=3 时,可以构建 5 棵形态互不相同的二叉树,如图 1(B)。