陷波器滤波参数推导

发布时间:2024年01月08日

1. 定义技术指标

  • 采样频率 fs = 20KHz
  • 中心频率 fc = 100Hz
  • 陷波宽度 band(B) = 20Hz
  • 陷波深度 depth = 40db

2. 计算参数

陷波器的标准传递函数为:
H ( s ) = s 2 + 2 ξ 1 ω c + ω c 2 s 2 + 2 ξ 2 ω c + ω c 2 (1) H(s) = \frac{s^2+2\xi_1 \omega_c+\omega_c^2}{s^2+2\xi_2 \omega_c+\omega_c^2}\tag{1} H(s)=s2+2ξ2?ωc?+ωc2?s2+2ξ1?ωc?+ωc2??(1)
其中 ω c \omega_c ωc?为陷波频率, ξ 1 , ξ 2 \xi_1,\xi_2 ξ1?,ξ2?为陷波系数.
用双线性变换法离散化(1)式可得(参考<常见三种陷波滤波器(Notch Filter)的离散化设计>):
Y ( z ) = n 0 + n 1 z ? 1 + n 2 z ? 2 d 0 + d 1 z ? 1 + d 2 z ? 2 Y(z)=\frac{n_0+n_1z^{-1}+n_2z^{-2}}{d_0+d_1z^{-1}+d_2z^{-2}} Y(z)=d0?+d1?z?1+d2?z?2n0?+n1?z?1+n2?z?2?
其中:
n 0 = ω c 2 T s 2 + 4 T s ξ 2 ω c + 4 n_0=\omega_c^2T_s^2+4T_s\xi_2\omega_c+4 n0?=ωc2?Ts2?+4Ts?ξ2?ωc?+4
n 1 = 2 ω c 2 T s 2 ? 8 n_1=2\omega_c^2T_s^2-8 n1?=2ωc2?Ts2??8
n 2 = ω c 2 T s 2 ? 4 T s ξ 2 ω c + 4 n_2=\omega_c^2T_s^2-4T_s\xi_2\omega_c+4 n2?=ωc2?Ts2??4Ts?ξ2?ωc?+4

d 0 = ω c 2 T s 2 + 4 T s ξ 1 ω c + 4 d_0=\omega_c^2T_s^2+4T_s\xi_1\omega_c+4 d0?=ωc2?Ts2?+4Ts?ξ1?ωc?+4
d 1 = 2 ω c 2 T s 2 ? 8 d_1=2\omega_c^2T_s^2-8 d1?=2ωc2?Ts2??8
d 2 = ω c 2 T s 2 ? 4 T s ξ 1 ω c + 4 d_2=\omega_c^2T_s^2-4T_s\xi_1\omega_c+4 d2?=ωc2?Ts2??4Ts?ξ1?ωc?+4

为了补偿离散化带来的频率畸变,将系数中的 ω c \omega_c ωc? 2 T s tan ? ω c T s / 2 \frac{2}{T_s}\tan{\omega_cT_s/2} Ts?2?tanωc?Ts?/2替代,并简化,可得( d , n d,n d,n同除了4):
n 0 = tan ? 2 ( π f c f s ) + 2 ξ 2 tan ? ( π f c f s ) + 1 n_0=\tan^2(\frac{\pi f_c}{f_s})+2\xi_2\tan(\frac{\pi f_c}{f_s})+1 n0?=tan2(fs?πfc??)+2ξ2?tan(fs?πfc??)+1
n 1 = 2 tan ? 2 ( π f c f s ) ? 2 n_1=2\tan^2(\frac{\pi f_c}{f_s})-2 n1?=2tan2(fs?πfc??)?2
n 2 = tan ? 2 ( π f c f s ) ? 2 ξ 2 tan ? ( π f c f s ) + 1 n_2=\tan^2(\frac{\pi f_c}{f_s})-2\xi_2\tan(\frac{\pi f_c}{f_s})+1 n2?=tan2(fs?πfc??)?2ξ2?tan(fs?πfc??)+1

d 0 = tan ? 2 ( π f c f s ) + 2 ξ 1 tan ? ( π f c f s ) + 1 d_0=\tan^2(\frac{\pi f_c}{f_s})+2\xi_1\tan(\frac{\pi f_c}{f_s})+1 d0?=tan2(fs?πfc??)+2ξ1?tan(fs?πfc??)+1
d 1 = 2 tan ? 2 ( π f c f s ) ? 2 d_1=2\tan^2(\frac{\pi f_c}{f_s})-2 d1?=2tan2(fs?πfc??)?2
d 2 = tan ? 2 ( π f c f s ) ? 2 ξ 1 tan ? ( π f c f s ) + 1 d_2=\tan^2(\frac{\pi f_c}{f_s})-2\xi_1\tan(\frac{\pi f_c}{f_s})+1 d2?=tan2(fs?πfc??)?2ξ1?tan(fs?πfc??)+1

根据参考文献参考<常见三种陷波滤波器(Notch Filter)的离散化设计>的推导, ξ 1 , ξ 2 \xi_1,\xi_2 ξ1?,ξ2?与陷波器参数之间存在如下关系:

ξ 1 = 4 π 2 B 2 ω c 2 + 1 + 1 ? 4 d e p t h 2 + 2 (2) \xi_1=\sqrt{\frac{\sqrt{\frac{4\pi^2B^2}{\omega_c^2}+1}+1}{-4depth^2+2}}\tag{2} ξ1?=?4depth2+2ωc2?4π2B2?+1 ?+1? ?(2)

ξ 2 = d e p t h ? ξ 1 \xi_2=depth*\xi_1 ξ2?=depth?ξ1?

观察 ξ 1 \xi_1 ξ1?的表达式,可以发现:

  • 一般滤波深度比较小,比如0.01(40db),平方之后近似为零,因此分母近似为2
  • 分母的变量部分约等于滤波宽度与中心频率的比值,因此当中心频率远大于滤波宽度时(比如10倍),分子也近似等于2,
    因此,在满足上述两个条件时,则整个 ξ 1 \xi_1 ξ1?的值,非常接近于1,如下图所示(x为中心角频率,y为 ξ 1 \xi_1 ξ1?):

image

因此为简单起见,或者在嵌入式系统中为减少计算量,可以将 ξ 1 \xi_1 ξ1?固定为1

文章来源:https://blog.csdn.net/zengxy3407/article/details/135449477
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。