C语言是面向过程的,关注的是过程,分析出求解问题的步骤,通过函数调用逐步解决问题。
C++是基于面向对象的,关注的是对象,将一件事情拆分成不同的对象,靠对象之间的交互完成
C语言结构体中只能定义变量,在C++中,结构体内不仅可以定义变量,也可以定义函数。比如:之前在数据结构初阶中,用C语言方式实现的栈,结构体中只能定义变量;现在以C++方式实现,会发现struct中也可以定义函数。
typedef int DataType;
struct Stack
{
void Init(size_t capacity)
{
_array = (DataType*)malloc(sizeof(DataType) * capacity);
if (nullptr == _array)
{
perror("malloc申请空间失败");
return;
}
_capacity = capacity;
_size = 0;
}
void Push(const DataType& data)
{
// 扩容
_array[_size] = data;
++_size;
}
DataType Top()
{
return _array[_size - 1];
}
void Destroy()
{
if (_array)
{
free(_array);
_array = nullptr;
_capacity = 0;
_size = 0;
}
}
DataType* _array;
size_t _capacity;
size_t _size;
};
int main()
{
Stack s;
s.Init(10);
s.Push(1);
s.Push(2);
s.Push(3);
cout << s.Top() << endl;
s.Destroy();
return 0;
}
在C++中struct更喜欢用class来代替
class className
{
// 类体:由成员函数和成员变量组成
}; // 一定要注意后面的分号
class为定义类的关键字,ClassName为类的名字,{}中为类的主体,注意类定义结束时后面分号不能省略。
类体中内容称为类的成员:类中的变量称为类的属性或成员变量; 类中的函数称为类的方法或者成员函数。
类的两种定义方式:
2. 类声明放在.h文件中,成员函数定义放在.cpp文件中,注意:成员函数名前需要加类名::
一般情况下,更期望采用第二种方式。
// 我们看看这个函数,是不是很僵硬?
class Date
{
public:
void Init(int year)
{
// 这里的year到底是成员变量,还是函数形参?
year = year;//
}
private:
int year;
};
// 所以一般都建议这样
class Date
{
public:
void Init(int year)
{
_year = year;
}
private:
int _year;
};
// 或者这样
class Date
{
public:
void Init(int year)
{
mYear = year;
}
private:
int mYear;
};
C++实现封装的方式:用类将对象的属性与方法结合在一块,让对象更加完善,通过访问权限选择性的将其接口提供给外部的用户使用
【访问限定符说明】
【面试题】
面向对象的三大特性:封装、继承、多态。
在类和对象阶段,主要是研究类的封装特性,那什么是封装呢?
封装:将数据和操作数据的方法进行有机结合,隐藏对象的属性和实现细节,仅对外公开接口来和对象进行交互。
封装本质上是一种管理,让用户更方便使用类比如:对于电脑这样一个复杂的设备,提供给用户的就只有开关机键、通过键盘输入,显示器,USB插孔等,让用户和计算机进行交互,完成日常事务。但实际上电脑真正工作的却是CPU、显卡、内存等一些硬件元件。
对于计算机使用者而言,不用关心内部核心部件,比如主板上线路是如何布局的,CPU内部是如何设计的等,用户只需要知道,怎么开机、怎么通过键盘和鼠标与计算机进行交互即可。因此计算机厂商在出厂时,在外部套上壳子,将内部实现细节隐藏起来,仅仅对外提供开关机、鼠标以及键盘插孔等,让用户可以与计算机进行交互即可。
在C++语言中实现封装,可以通过类将数据以及操作数据的方法进行有机结合,通过访问权限来隐藏对象内部实现细节,控制哪些方法可以在类外部直接被使用。
类定义了一个新的作用域,类的所有成员都在类的作用域中。在类体外定义成员时,需要使用 ::作用域操作符指明成员属于哪个类域。
Person.h文件
//定义一个人的类
class Person
{
//成员函数——显式基本信息
void showInfo();
//成员变量
char* _name;//姓名
char* _sex;//性别
int _age;//年龄
};
Person.cpp文件
#include "Person.h"
void Person::showInfo()
{
cout << _name << "-" << _sex << "-" << _age << "-" << endl;
}
如上面的成员函数showInfo,对于函数体中出现的变量_name等,编译器会先在当前函数的局部域中搜索,如果没有找到,接下来会到对应的类域里面去搜索,当类域里面也没有的时候,最后回到全局区搜索,如果全局也没有,编译就会报错。
注意:所有的域都会影响访问,但是只有全局域和局部域会影响生命周期,而类域和命名空间域不会影响声明周期。
用类类型创建对象的过程,称为类的实例化
int main()
{
Person._age = 100; // 编译失败:error C2059: 语法错误:“.”
return 0;
}
Person类是没有空间的,只有Person类实例化出的对象才有具体的年龄
3. 做个比方。类实例化出对象就像现实中使用建筑设计图建造出房子,类就像是设计图,只设计出需要什么东西,但是并没有实体的建筑存在,同样类也只是一个设计,实例化出的对象才能实际存储数据,占用物理空间
// 类中既有成员变量,又有成员函数
class A1
{
public:
void f1() {}
private:
int _a;
};
// 类中仅有成员函数
class A2 {
public:
void f2() {}
};
// 类中什么都没有---空类
class A3
{};
int main()
{
cout << "A1的大小" << sizeof(A1) << endl;
cout << "A2的大小" << sizeof(A2) << endl;
cout << "A3的大小" << sizeof(A3) << endl;
return 0;
}
结论:一个类的大小,实际就是该类中”成员变量”之和,当然要注意内存对齐
注意空类的大小,空类比较特殊,编译器给了空类一个字节来唯一标识这个类的对象
sizeof(类)和sizeof(对象)计算出来的结果是一样
【面试题】
结构体怎么对齐? 为什么要进行内存对齐?
如何让结构体按照指定的对齐参数进行对齐?能否按照3、4、5即任意字节对齐?
什么是大小端?如何测试某台机器是大端还是小端,有没有遇到过要考虑大小端的场景
自定义类型:结构体,枚举,联合
深度刨析数据在内存中的储存
上两篇文章中有做回答
//定义一个日期类
class Date
{
public:
void Init(int year, int month, int day)
{
_year = year;
_month = month;
_day = day;
}
void Print()
{
cout << _year << "-" << _month << "-" << _day << endl;
}
private:
int _year; // 年
int _month; // 月
int _day; // 日
};
int main()
{
Date d1, d2;//定义两个日期类
d1.Init(2022, 1, 11);//给d1初始化化
d2.Init(2022, 1, 12);//给d2初始化
d1.Print();//调用Print函数
d2.Print();//调用Print函数
return 0;
}
对于上述类,有这样的一个问题:
Date类中有 Init 与 Print 两个成员函数,函数体中没有关于不同对象的区分,那当d1调用 Init 函数时,该函数是如何知道应该设置d1对象,而不是设置d2对象呢?
C++中通过引入this指针解决该问题,即:C++编译器给每个“非静态的成员函数“增加了一个隐藏的指针参数,让该指针指向当前对象(函数运行时调用该函数的对象),在函数体中所有“成员变量”的操作,都是通过该指针去访问。只不过所有的操作对用户是透明的,即用户不需要来传递,编译器自动完成。
class Date
{
public:
void Init(int year, int month, int day)
{
_year = year;
_month = month;
_day = day;
}
void Print()
{
cout << _year << "-" << _month << "-" << _day << endl;
}
//void Print(Date* const this)
//{
// cout << this->_year << "-" << this->_month << "-" << this->_day << endl;
//}
private:
int _year;
int _month;
int _day;
};
class A
{
private:
char _ch;
int _a;
};
int main()
{
Date d1;
Date d2;
d1.Init(2023, 10, 7);
d2.Init(2022, 10, 7);
// 不能显示写this相关实参和形参
d1.Print();
d2.Print();
//d1.Print(&d1);
//d2.Print(&d2);
return 0;
}
【面试题】
// 1.下面程序编译运行结果是? A、编译报错 B、运行崩溃 C、正常运行
class A
{
public:
void Print()
{
cout << "Print()" << endl;
}
private:
int _a;
};
int main()
{
A* p = nullptr;
p->Print();
return 0;
}
上面这段代码,定义了一个A类型的指针p,并把它置为空,然后用这个指针p去调用成员函数,不会发生解引用,因为Print函数的地址不在对象中(要看转换成汇编指令,都干了些啥,这里直接去call成员函数的地址)。p会作为实参传递给this指针。传递空指针不会报错,所以此时成员函数中的隐藏参数this指针,是拷贝的p指针的值,所以此时的形参this指针是nullptr。针对这个题目,首先可以排除掉A选项,因为空指针的问题是属于运行时错误,不可能是编译时错误。这道题目选C,代码可以正常运行,因为,虽然this指针是空,但是在Print成员函数中,我们并没有去访问任何类中的其他成员,这就意味着,我们根本就没有使用这个this指针,所以代码可以正常运行。
// 1.下面程序编译运行结果是? A、编译报错 B、运行崩溃 C、正常运行
class A
{
public:
void PrintA()
{
cout << _a << endl;
}
private:
int _a;
};
int main()
{
A* p = nullptr;
p->PrintA();
return 0;
}
和上面的代码一样,这段代码的this指针也是nullptr,但是这段代码会运行崩溃,因为在成员函数Print中使用了类中的其他成员_a,这就相当于this->_a,而this是一个空指针,这就成了解引用空指针,所以会运行崩溃。
typedef int DataType;
typedef struct Stack
{
DataType* array;
int capacity;
int size;
}Stack;
void StackInit(Stack* ps)
{
assert(ps);
ps->array = (DataType*)malloc(sizeof(DataType) * 3);
if (NULL == ps->array)
{
assert(0);
return;
}
ps->capacity = 3;
ps->size = 0;
}
void StackDestroy(Stack* ps)
{
assert(ps);
if (ps->array)
{
free(ps->array);
ps->array = NULL;
ps->capacity = 0;
ps->size = 0;
}
}
void CheckCapacity(Stack* ps)
{
if (ps->size == ps->capacity)
{
int newcapacity = ps->capacity * 2;
DataType* temp = (DataType*)realloc(ps->array,
newcapacity * sizeof(DataType));
if (temp == NULL)
{
perror("realloc申请空间失败!!!");
return;
}
ps->array = temp;
ps->capacity = newcapacity;
}
}
void StackPush(Stack* ps, DataType data)
{
assert(ps);
CheckCapacity(ps);
ps->array[ps->size] = data;
ps->size++;
}
int StackEmpty(Stack* ps)
{
assert(ps);
return 0 == ps->size;
}
void StackPop(Stack* ps)
{
if (StackEmpty(ps))
return;
ps->size--;
}
DataType StackTop(Stack* ps)
{
assert(!StackEmpty(ps));
return ps->array[ps->size - 1];
}
int StackSize(Stack* ps)
{
assert(ps);
return ps->size;
}
int main()
{
Stack s;
StackInit(&s);
StackPush(&s, 1);
StackPush(&s, 2);
StackPush(&s, 3);
StackPush(&s, 4);
printf("%d\n", StackTop(&s));
printf("%d\n", StackSize(&s));
StackPop(&s);
StackPop(&s);
printf("%d\n", StackTop(&s));
printf("%d\n", StackSize(&s));
StackDestroy(&s);
return 0;
}
可以看到,在用C语言实现时,Stack相关操作函数有以下共性:
typedef int DataType;
class Stack
{
public:
void Init()
{
_array = (DataType*)malloc(sizeof(DataType) * 3);
if (NULL == _array)
{
perror("malloc申请空间失败!!!");
return;
}
_capacity = 3;
_size = 0;
}
void Push(DataType data)
{
CheckCapacity();
_array[_size] = data;
_size++;
}
void Pop()
{
if (Empty())
return;
_size--;
}
DataType Top() { return _array[_size - 1]; }
int Empty() { return 0 == _size; }
int Size() { return _size; }
void Destroy()
{
if (_array)
{
free(_array);
_array = NULL;
_capacity = 0;
_size = 0;
}
}
private:
void CheckCapacity()
{
if (_size == _capacity)
{
int newcapacity = _capacity * 2;
DataType* temp = (DataType*)realloc(_array, newcapacity *
sizeof(DataType));
if (temp == NULL)
{
perror("realloc申请空间失败!!!");
return;
}
_array = temp;
_capacity = newcapacity;
}
}
private:
DataType* _array;
int _capacity;
int _size;
};
int main()
{
Stack s;
s.Init();
s.Push(1);
s.Push(2);
s.Push(3);
s.Push(4);
printf("%d\n", s.Top());
printf("%d\n", s.Size());
s.Pop();
s.Pop();
printf("%d\n", s.Top());
printf("%d\n", s.Size());
s.Destroy();
return 0;
}
C++中通过类可以将数据 以及 操作数据的方法进行完美结合,通过访问权限可以控制那些方法在类外可以被调用,即封装,在使用时就像使用自己的成员一样,更符合人类对一件事物的认知。
而且每个方法不需要传递Stack*的参数了,编译器编译之后该参数会自动还原,即C++中 Stack *参数是编译器维护的,C语言中需用用户自己维护。
💘不知不觉,【C++初阶】类与对象(上)学习告一段落。通读全文的你肯定收获满满,让我们继续为C++学习共同奋进!!!