为了方便对应,后面会拆一下
公式代码放入LaTeX编译环境中时,两边需要加入$$:
$$公式代码$$
L^{A}T_{E}X\,2_{\epsilon}
c^{2}=a^{2}+b^{2}
\tau\phi
\cos2\pi=1
f\, =\,a^{x}\,+\,b
\heartsuit
\cos^{2}\theta + \sin^{2}\theta = 1.0
\cos2\theta=\sin^{2}\theta + \cos^{2}\theta = 1-2\sin^{2}\theta = 2\cos^{2}\theta -1
\lim_{n \to \infty}\sum_{k=1}^{n}\frac{1}{k^2}=\frac{\pi^2}{6}
?
\lim_{n \to \infty}\sum_{k=1}^{n}\frac{1}{k^{2}}=\frac{\pi^{2}}{6}
?
\forall x \in \mathbf{R},\, x^{2}\geq 0;
?
x^{2}\geq0\qquad \textrm{for all } x \in \mathbb{R}
alpha\,, \beta\,, \gamma\,,\Gamma\,,\xi\,,\Xi\,,\pi\,,\Pi\,,\mu\,,\phi\,,\Phi\,,\omega\,,\Omega
?
e^{-\alpha t}
?
\sum_{k=1}^{N}(a_{ik}*b_{kj})^2
\sqrt{1+x^2}$ \qquad $\sqrt{x^2+\sqrt{y}}
?
\surd{[x^2+y^2]}
\underline{x+y}
\overline{x y}
?
\overbrace{1+2+\cdots+N}
?
\underbrace{1*2*\cdots*N}
\widetilde{\alpha*\beta*\gamma*\delta}
\widehat{a*b*c*e*f}
y'=2x
\vec{A}
\overrightarrow{ABCD}
x = A \cdot B \cdot C
\arccos{\theta},\qquad \cos{2\theta},\qquad \log{y},\qquad \limsup{(x_i)}
\lim_{\theta \to 0} \frac{\theta}{\sin{\theta}} = 1
{3 \choose M+N}
{3 \atop {M+N}}
\int_{0}^{1}{f(x)}\,d x \stackrel{?}{=} y
y(t)=\int f(t)\,dt
\int_{-\infty}^{\infty}{\sin^x(x)} dx \ne 1
z=\sum_{i=1}^{N}\left( \frac{1+{x_i}^2}{1+{y_i}^2} \right)
\frac{1}{1}+\frac{1}{2} + \frac{1}{3} + \ldots \frac{1}{N}
\frac{1}{1}+\frac{1}{2} + \frac{1}{3} + \cdots \frac{1}{N}
\vdots_{N}^{1}
$$|\!|$$
$$||$$
$$|\,|$$
$$|\:|$$
$$|\;|$$
$$|\ |$$
$$|\quad|$$
$$|\qquad|$$
\int\!\!\!\int_{\Omega} f(x,y)\, dx\,dy
\int\int_{\Omega} f(x,y)\,dx\,dy
\iint f(x,y)\,dx dy
\iiint \mu(x,y,z)\,dx dy dz
\iiiint \theta(s,t,u,v)\,ds dt du dv
\idotsint f(x_{1},x_{2},\cdots,x_{N})\, dx_{1} dx_{2} \cdots dx_{N}
未完待续
\documentclass[]{article}
\title{Maths Formula}
\usepackage{amssymb}
\usepackage{amsmath}
\begin{document}
\maketitle
\[
L^{A}T_{E}X\,2_{\epsilon}
\]
\[
L^{A}T_{E}X\,2_{\epsilon}
\]
\LaTeXe\newline
\LaTeX\\\newline
$c^{2}=a^{2}+b^{2}$
$$c^{2}=a^{2}+b^{2}$$
$\tau$\\
$\tau\phi$
$$\pi$$
\begin{equation}
\cos2\pi=1
\end{equation}
$\cos2\pi=1$
$$\cos2\pi=1$$
\begin{equation}
f\, =\,a^{x}\,+\,b
\end{equation}
100~m$^{3}$\\
$\heartsuit$\\
a$a$a$$a$$\\
\begin{displaymath}
\cos^{2}\theta + \sin^{2}\theta = 1.0
\end{displaymath}
\begin{equation} \label{eq:eps}
\cos2\theta=\sin^{2}\theta + \cos^{2}\theta = 1-2\sin^{2}\theta = 2\cos^{2}\theta
\end{equation}
\\
\\
\\
\\
$\lim_{n \to \infty}\sum_{k=1}^{n}\frac{1}{k^2}=\frac{\pi^2}{6}$
$$\lim_{n \to \infty}\sum_{k=1}^{n}\frac{1}{k^2}=\frac{\pi^2}{6}$$
\begin{equation}
\lim_{n \to \infty}\sum_{k=1}^{n}\frac{1}{k^{2}}=\frac{\pi^{2}}{6}
\end{equation}
\begin{displaymath}
\lim_{n \to \infty}\sum_{k=1}^{n}\frac{1}{k^{2}}=\frac{\pi^{2}}{6}
\end{displaymath}
\begin{equation}
\forall x \in \mathbf{R},\, x^{2}\geq 0;
\end{equation}
\begin{displaymath}
x^{2}\geq0\qquad \textrm{for all } x \in \mathbb{R}
\end{displaymath}
$$a^x + y \neq a^{x+y}$$
$$\alpha\,, \beta\,, \gamma\,,\Gamma\,,\xi\,,\Xi\,,\pi\,,\Pi\,,\mu\,,\phi\,,\Phi\,,\omega\,,\Omega$$\\\\
$x_{3}$ $e^{-\alpha t}$\\
$x_{3}$\qquad $e^{-\alpha t}$
$$\sum_{k=1}^{N}(a_{ik}*b_{kj})^2$$\\
$\sqrt{1+x^2}$ \qquad $\sqrt{x^2+\sqrt{y}}$\\
$$\sqrt[3]{1+x^2}$$
$$\surd{[x^2+y^2]}$$\\
$$\underline{x+y}$$
$$\overline{x \and y}$$
$$\overbrace{1+2+\cdots+N}$$
$$\underbrace{1*2*\cdots*N}$$
$$\widetilde{\alpha*\beta*\gamma*\delta}$$
$$\widehat{a*b*c*e*f}$$
$$y=x^{2}$$ $$y'=2x$$ $$y''=2$$
$y=x^{2}$\qquad$y'=2x$\qquad$y''=2$
$$\vec{A}$$
$$\overrightarrow{ABCD}$$
\begin{displaymath}
x = A \cdot B \cdot C
\end{displaymath}
$$\arccos{\theta},\qquad \cos{2\theta},\qquad \log{y},\qquad \limsup{(x_i)}$$
\[
\lim_{\theta \to 0} \frac{\theta}{\sin{\theta}} = 1
\]
$${3 \choose M+N}$$
$${3 \atop {M+N}}$$
$$\int_{0}^{1}{f(x)}\,d x \stackrel{?}{=} y$$
$$y(t)=\int f(t)\,dt$$
$$\int_{-\infty}^{\infty}{\sin^x(x)} dx \ne 1$$
$$z=\sum_{i=1}^{N}\left( \frac{1+{x_i}^2}{1+{y_i}^2} \right)$$
$$\frac{1}{1}+\frac{1}{2} + \frac{1}{3} + \ldots \frac{1}{N}+$$
$$\frac{1}{1}+\frac{1}{2} + \frac{1}{3} + \cdots \frac{1}{N}+$$
$$\frac{1}{1}+\frac{1}{2} + \frac{1}{3} + \ddots \frac{1}{N}+$$
$$\vdots_{N}^{1}$$
$$|\!|$$
$$||$$
$$|\,|$$
$$|\:|$$
$$|\;|$$
$$|\ |$$
$$|\quad|$$
$$|\qquad|$$
\newcommand{\ud}{\matchrm{d}}
\begin{displaymath}
\int\!\!\!\int_{\Omega} f(x,y)\, dx\,dy
\end{displaymath}
$$\int\int_{\Omega} f(x,y)\,dx\,dy$$
$$\iint f(x,y)\,dx dy$$
$$\iiint \mu(x,y,z)\,dx dy dz$$
$$\iiiint \theta(s,t,u,v)\,ds dt du dv$$
$$\idotsint f(x_{1},x_{2},\cdots,x_{N})\, dx_{1} dx_{2} \cdots dx_{N}$$
\end{document}
?