整理了一下常用的LaTeX数学公式语法,未完待续

发布时间:2024年01月24日

为了方便对应,后面会拆一下

公式代码放入LaTeX编译环境中时,两边需要加入$$:

$$公式代码$$

1,分解示例

L^{A}T_{E}X\,2_{\epsilon}

L^{A}T_{E}X\,2_{\epsilon}

c^{2}=a^{2}+b^{2}

c^{2}=a^{2}+b^{2}

\tau\phi

\tau\phi

\cos2\pi=1

\cos2\pi=1

f\, =\,a^{x}\,+\,b

f\, =\,a^{x}\,+\,b

\heartsuit

\heartsuit

\cos^{2}\theta + \sin^{2}\theta = 1.0

\cos^{2}\theta + \sin^{2}\theta = 1.0

    \cos2\theta=\sin^{2}\theta + \cos^{2}\theta = 1-2\sin^{2}\theta = 2\cos^{2}\theta -1

\cos2\theta=\sin^{2}\theta + \cos^{2}\theta = 1-2\sin^{2}\theta = 2\cos^{2}\theta -1

\lim_{n \to \infty}\sum_{k=1}^{n}\frac{1}{k^2}=\frac{\pi^2}{6}

\lim_{n \to \infty}\sum_{k=1}^{n}\frac{1}{k^2}=\frac{\pi^2}{6}?

\lim_{n \to \infty}\sum_{k=1}^{n}\frac{1}{k^{2}}=\frac{\pi^{2}}{6}

\lim_{n \to \infty}\sum_{k=1}^{n}\frac{1}{k^{2}}=\frac{\pi^{2}}{6}?

 \forall x \in \mathbf{R},\, x^{2}\geq 0;

\forall x \in \mathbf{R},\, x^{2}\geq 0;?

 x^{2}\geq0\qquad \textrm{for all } x \in \mathbb{R}

x^{2}\geq0\qquad \textrm{for all } x \in \mathbb{R}

alpha\,, \beta\,, \gamma\,,\Gamma\,,\xi\,,\Xi\,,\pi\,,\Pi\,,\mu\,,\phi\,,\Phi\,,\omega\,,\Omega

alpha\,, \beta\,, \gamma\,,\Gamma\,,\xi\,,\Xi\,,\pi\,,\Pi\,,\mu\,,\phi\,,\Phi\,,\omega\,,\Omega?

e^{-\alpha t}

e^{-\alpha t}?

\sum_{k=1}^{N}(a_{ik}*b_{kj})^2

\sum_{k=1}^{N}(a_{ik}*b_{kj})^2

\sqrt{1+x^2}$  \qquad  $\sqrt{x^2+\sqrt{y}}

\sqrt{1+x^2}$ \qquad $\sqrt{x^2+\sqrt{y}}?

\surd{[x^2+y^2]}

\surd{[x^2+y^2]}

\underline{x+y}

\underline{x+y}

\overline{x  y}

\overline{x y}?

\overbrace{1+2+\cdots+N}

\overbrace{1+2+\cdots+N}?

\underbrace{1*2*\cdots*N}

\underbrace{1*2*\cdots*N}

\widetilde{\alpha*\beta*\gamma*\delta}

\widetilde{\alpha*\beta*\gamma*\delta}

\widehat{a*b*c*e*f}

\widehat{a*b*c*e*f}

y'=2x

y'=2x

\vec{A}

\vec{A}

\overrightarrow{ABCD}

\overrightarrow{ABCD}

x = A \cdot B \cdot C

x = A \cdot B \cdot C

\arccos{\theta},\qquad \cos{2\theta},\qquad \log{y},\qquad \limsup{(x_i)}

\arccos{\theta},\qquad \cos{2\theta},\qquad \log{y},\qquad \limsup{(x_i)}

\lim_{\theta \to 0}    \frac{\theta}{\sin{\theta}} = 1

\lim_{\theta \to 0} \frac{\theta}{\sin{\theta}} = 1

{3 \choose M+N}

{3 \choose M+N}

{3 \atop {M+N}}

{3 \atop {M+N}}

\int_{0}^{1}{f(x)}\,d x \stackrel{?}{=} y

\int_{0}^{1}{f(x)}\,d x \stackrel{?}{=} y

y(t)=\int f(t)\,dt

y(t)=\int f(t)\,dt

\int_{-\infty}^{\infty}{\sin^x(x)}  dx \ne 1

\int_{-\infty}^{\infty}{\sin^x(x)} dx \ne 1

z=\sum_{i=1}^{N}\left(  \frac{1+{x_i}^2}{1+{y_i}^2}   \right)

z=\sum_{i=1}^{N}\left( \frac{1+{x_i}^2}{1+{y_i}^2} \right)

\frac{1}{1}+\frac{1}{2} + \frac{1}{3} + \ldots \frac{1}{N}

\frac{1}{1}+\frac{1}{2} + \frac{1}{3} + \ldots \frac{1}{N}

\frac{1}{1}+\frac{1}{2} + \frac{1}{3} + \cdots \frac{1}{N}

\frac{1}{1}+\frac{1}{2} + \frac{1}{3} + \cdots \frac{1}{N}

\vdots_{N}^{1}

\vdots_{N}^{1}

$$|\!|$$
$$||$$
$$|\,|$$
$$|\:|$$
$$|\;|$$
$$|\ |$$
$$|\quad|$$
$$|\qquad|$$

|\!|$$ $$||$$ $$|\,|$$ $$|\:|$$ $$|\;|$$ $$|\ |$$ $$|\quad|$$ $$|\qquad|

\int\!\!\!\int_{\Omega} f(x,y)\, dx\,dy

\int\!\!\!\int_{\Omega} f(x,y)\, dx\,dy

\int\int_{\Omega} f(x,y)\,dx\,dy

\int\int_{\Omega} f(x,y)\,dx\,dy

\iint f(x,y)\,dx dy

\iint f(x,y)\,dx dy

\iiint \mu(x,y,z)\,dx dy dz

\iiint \mu(x,y,z)\,dx dy dz

\iiiint \theta(s,t,u,v)\,ds dt du dv

\iiiint \theta(s,t,u,v)\,ds dt du dv

\idotsint f(x_{1},x_{2},\cdots,x_{N})\, dx_{1} dx_{2} \cdots dx_{N}

\idotsint f(x_{1},x_{2},\cdots,x_{N})\, dx_{1} dx_{2} \cdots dx_{N}

未完待续

2,综合示例

2.1 代码

\documentclass[]{article}
\title{Maths Formula}
\usepackage{amssymb}
\usepackage{amsmath}
\begin{document}
\maketitle
\[
L^{A}T_{E}X\,2_{\epsilon}
\]
\[
L^{A}T_{E}X\,2_{\epsilon}
\]
\LaTeXe\newline
\LaTeX\\\newline
$c^{2}=a^{2}+b^{2}$
$$c^{2}=a^{2}+b^{2}$$
$\tau$\\
$\tau\phi$
$$\pi$$
\begin{equation}
\cos2\pi=1
\end{equation}
$\cos2\pi=1$
$$\cos2\pi=1$$

\begin{equation}
    f\, =\,a^{x}\,+\,b
\end{equation}
100~m$^{3}$\\
$\heartsuit$\\
a$a$a$$a$$\\

\begin{displaymath}
    \cos^{2}\theta + \sin^{2}\theta = 1.0
\end{displaymath}

\begin{equation} \label{eq:eps}
    \cos2\theta=\sin^{2}\theta + \cos^{2}\theta = 1-2\sin^{2}\theta = 2\cos^{2}\theta
\end{equation}
 \\
 \\
 \\
 \\
$\lim_{n \to \infty}\sum_{k=1}^{n}\frac{1}{k^2}=\frac{\pi^2}{6}$
$$\lim_{n \to \infty}\sum_{k=1}^{n}\frac{1}{k^2}=\frac{\pi^2}{6}$$

\begin{equation}
    \lim_{n \to \infty}\sum_{k=1}^{n}\frac{1}{k^{2}}=\frac{\pi^{2}}{6}
\end{equation}
\begin{displaymath}
    \lim_{n \to \infty}\sum_{k=1}^{n}\frac{1}{k^{2}}=\frac{\pi^{2}}{6}
\end{displaymath}


\begin{equation}
    \forall x \in \mathbf{R},\, x^{2}\geq 0;
\end{equation}

\begin{displaymath}
    x^{2}\geq0\qquad \textrm{for all } x \in \mathbb{R}
\end{displaymath}

$$a^x + y \neq a^{x+y}$$

$$\alpha\,, \beta\,, \gamma\,,\Gamma\,,\xi\,,\Xi\,,\pi\,,\Pi\,,\mu\,,\phi\,,\Phi\,,\omega\,,\Omega$$\\\\
$x_{3}$    $e^{-\alpha t}$\\
$x_{3}$\qquad $e^{-\alpha t}$

$$\sum_{k=1}^{N}(a_{ik}*b_{kj})^2$$\\

$\sqrt{1+x^2}$  \qquad  $\sqrt{x^2+\sqrt{y}}$\\
$$\sqrt[3]{1+x^2}$$

$$\surd{[x^2+y^2]}$$\\
$$\underline{x+y}$$
$$\overline{x \and y}$$

$$\overbrace{1+2+\cdots+N}$$
$$\underbrace{1*2*\cdots*N}$$

$$\widetilde{\alpha*\beta*\gamma*\delta}$$
$$\widehat{a*b*c*e*f}$$

$$y=x^{2}$$ $$y'=2x$$ $$y''=2$$
$y=x^{2}$\qquad$y'=2x$\qquad$y''=2$

$$\vec{A}$$
$$\overrightarrow{ABCD}$$
\begin{displaymath}
    x = A \cdot B \cdot C
\end{displaymath}

$$\arccos{\theta},\qquad \cos{2\theta},\qquad \log{y},\qquad \limsup{(x_i)}$$

\[
\lim_{\theta \to 0}    \frac{\theta}{\sin{\theta}} = 1
\]


$${3 \choose M+N}$$
$${3 \atop {M+N}}$$

$$\int_{0}^{1}{f(x)}\,d x \stackrel{?}{=} y$$

$$y(t)=\int f(t)\,dt$$
$$\int_{-\infty}^{\infty}{\sin^x(x)}  dx \ne 1$$

$$z=\sum_{i=1}^{N}\left(  \frac{1+{x_i}^2}{1+{y_i}^2}   \right)$$

$$\frac{1}{1}+\frac{1}{2} + \frac{1}{3} + \ldots \frac{1}{N}+$$
$$\frac{1}{1}+\frac{1}{2} + \frac{1}{3} + \cdots \frac{1}{N}+$$
$$\frac{1}{1}+\frac{1}{2} + \frac{1}{3} + \ddots \frac{1}{N}+$$
$$\vdots_{N}^{1}$$

$$|\!|$$
$$||$$
$$|\,|$$
$$|\:|$$
$$|\;|$$
$$|\ |$$
$$|\quad|$$
$$|\qquad|$$

\newcommand{\ud}{\matchrm{d}}
\begin{displaymath}
\int\!\!\!\int_{\Omega} f(x,y)\, dx\,dy
\end{displaymath}
$$\int\int_{\Omega} f(x,y)\,dx\,dy$$


$$\iint f(x,y)\,dx dy$$
$$\iiint \mu(x,y,z)\,dx dy dz$$
$$\iiiint \theta(s,t,u,v)\,ds dt du dv$$
$$\idotsint f(x_{1},x_{2},\cdots,x_{N})\, dx_{1} dx_{2} \cdots dx_{N}$$






\end{document}

2.2 效果

?

文章来源:https://blog.csdn.net/eloudy/article/details/135830153
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。