题目链接:https://leetcode.cn/problems/number-of-connected-components-in-an-undirected-graph/description/
思路:求联通分量一般是通过并查集,而构建并查集则非常简单,使用一个数组模拟森林,每个槽位记录对应的父节点,合并两个集合时只需要把一个根节点作为另一个根节点的子节点,此外为了提升效率,在查询根节点的过程中可以采用压缩路径的方法,即不断的让当前节点与其父节点做兄弟。
class Solution {
public int countComponents(int n, int[][] edges) {
UF uf = new UF(n);
for (int[] edge : edges) {
uf.union(edge[0], edge[1]);
}
return uf.count;
}
class UF {
int[] parent;
int count;
public UF(int n) {
parent = new int[n];
for (int i = 0; i < n; i++) {
parent[i] = i;
}
count = n;
}
int find(int x) {
if (parent[x] != x) {
parent[x] = find(parent[x]);
}
return parent[x];
}
boolean connected(int x, int y) {
return find(x) == find(y);
}
void union(int x, int y) {
int p = find(x);
int q = find(y);
if (p == q) return;
parent[p] = q;
count--;
}
}
}
题目链接:https://leetcode.cn/problems/surrounded-regions/
思路:这是一个岛屿问题,也是棋盘问题,其实描述的是一件事情。一般采用dfs解决。本题要求与边界不相邻的修改为X,与边界相邻的不动。其实我们可以只dfs与边界相邻的,修改为A。之后直接for循环遍历棋盘,把O改为X,把A改为O。
class Solution {
public void solve(char[][] board) {
int row = board.length, col = board[0].length;
for (int i = 0; i < row; i++) {
if (board[i][0] == 'O') dfs(board, i, 0);
if (board[i][col-1] == 'O') dfs(board, i, col-1);
}
for (int i = 0; i < col; i++) {
if (board[0][i] == 'O') dfs(board, 0, i);
if (board[row-1][i] == 'O') dfs(board, row-1, i);
}
for (int i = 0; i < row; i++) {
for (int j = 0; j < col; j++) {
if (board[i][j] == 'O') board[i][j] = 'X';
if (board[i][j] == 'A') board[i][j] = 'O';
}
}
}
void dfs(char[][] board, int x, int y) {
if (x < 0 || x >= board.length || y < 0 || y >= board[0].length || board[x][y] != 'O') return;
board[x][y] = 'A';
dfs(board, x-1, y);
dfs(board, x+1, y);
dfs(board, x, y-1);
dfs(board, x, y+1);
}
}
题目链接:https://leetcode.cn/problems/satisfiability-of-equality-equations/
思路:把相等的进行连接,然后逐个判断不等的看看是否在一个联通里,如果不等的在一个联通里即不满住可满足性。
class Solution {
public boolean equationsPossible(String[] equations) {
UF uf = new UF(26);
for (String s : equations) {
if (s.charAt(1) == '=') {
uf.union(s.charAt(0)-'a', s.charAt(3)-'a');
}
}
for (String s : equations) {
if (s.charAt(1) == '!') {
if (uf.connected(s.charAt(0)-'a', s.charAt(3)-'a')) {
return false;
}
}
}
return true;
}
class UF {
int[] parent;
int count;
public UF(int n) {
parent = new int[n];
for (int i = 0; i < n; i++) {
parent[i] = i;
}
count = n;
}
int find(int x) {
if (x != parent[x]) {
parent[x] = find(parent[x]);
}
return parent[x];
}
boolean connected(int x, int y) {
return find(x) == find(y);
}
void union(int x, int y) {
int a = find(x);
int b = find(y);
if (a == b)return;
parent[a] = b;
count--;
}
}
}