YOLOv8优化策略:轻量化改进 | MobileNetV3,轻量级骨架首选

发布时间:2024年01月10日

 ??????本文改进:MobileNetV3的创新点包括:使用自适应瓶颈宽度、借鉴SENet中的Squeeze-and-Excitation机制、引入h-swish激活函数等。

 ??????YOLOv8改进专栏:http://t.csdnimg.cn/hGhVK

学姐带你学习YOLOv8,从入门到创新,轻轻松松搞定科研;

 1.MobileNetV3介绍

论文:https://arxiv.org/pdf/1905.02244.pdf 

MobileNetV1、V2、V3都是Google提出的轻量级卷积神经网络模型,用于在移动设备等资源受限环境下进行图像分类、目标检测等任务。

其中,MobileNetV1是第一个被提出的版本,它主要采用深度可分离卷积(Depthwise Separable Convolution)来减少计算量和参数量,从而达到轻量化的效果。MobileNetV2在MobileNetV1的基础上,引入了线性瓶颈和倒残差等结构?

文章来源:https://blog.csdn.net/CV_20231007/article/details/135507607
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。