map模拟
class Solution {
public:
vector<int> findMissingAndRepeatedValues(vector<vector<int>>& grid) {
int n = grid.size() , m = grid[0].size();
map<int,int>mi;
for(int i = 0 ; i < n ; i ++){
for(int j = 0 ; j < m ; j ++){
mi[grid[i][j]] ++;
}
}
vector<int> ans;
for(int i = 1 ; i <= n * n ; i ++){
if(mi[i] > 1)ans.push_back(i);
}
for(int i = 1 ; i <= n * n ; i ++){
if(mi[i] == 0)ans.push_back(i);
}
return ans;
}
};
排序后直接模拟
class Solution {
public:
vector<vector<int>> divideArray(vector<int>& nums, int k) {
vector<vector<int> >ans;
vector<vector<int> >res;
int n = nums.size();
ranges::sort(nums);
bool f = true;
if(n % 3 != 0)f = false;
for(int i = 0 ; i + 2 < n ; i += 3){
int a = nums[i] , c = nums[i + 2];
if(c - a > k)f = false;
ans.push_back({a , nums[i + 1] , c});
}
if(f == false)return res;
return ans;
}
};
找到中位数再二分最近的回文
//代码来自TsReaper
bool inited = false;
vector<int> good;
void init() {
if (inited) return;
inited = true;
for (int i = 1; i < 10; i++) good.push_back(i);
// 首先枚举回文数一半的长度 len,以及这一半数值的上限 p
for (int p = 10, len = 1; p <= 1e4; p *= 10, len++) {
// 枚举回文数的一半具体是什么数
for (int i = 1; i < p; i++) if (i % 10 != 0) {
// 把每个数位拆开来
vector<int> vec;
for (int x = i, j = len; j > 0; x /= 10, j--) vec.push_back(x % 10);
// 回文数长度是偶数的情况
int v = 0;
for (int j = 0; j < len; j++) v = v * 10 + vec[j];
for (int j = len - 1; j >= 0; j--) v = v * 10 + vec[j];
good.push_back(v);
// 回文数长度是奇数的情况,需要枚举中间那一位是什么数
for (int k = 0; k < 10; k++) {
v = 0;
for (int j = 0; j < len; j++) v = v * 10 + vec[j];
v = v * 10 + k;
for (int j = len - 1; j >= 0; j--) v = v * 10 + vec[j];
good.push_back(v);
}
}
}
sort(good.begin(), good.end());
}
class Solution {
public:
long long minimumCost(vector<int>& nums) {
init();
int n = nums.size();
sort(nums.begin(), nums.end());
// 计算所有数都变成 x 的代价
auto get = [&](int x){
long long res = 0;
for(int i = 0 ; i < n ; i ++){
res += abs(nums[i] - x);
}
return res;
};
long long ans = 1e18;
int idx = lower_bound(good.begin(), good.end(), nums[n / 2]) - good.begin();
ans = min(ans, get(good[idx]));
if (idx - 1 >= 0) ans = min(ans, get(good[idx - 1]));
return ans;
}
};
滑动窗口统计化成中位数的最小步骤
//代码来自TsReaper
class Solution {
public:
int maxFrequencyScore(vector<int>& nums, long long k) {
int n = nums.size();
nums.push_back(0);
sort(nums.begin(), nums.end());
// 预处理前缀和
long long f[n + 1];
f[0] = 0;
for (int i = 1; i <= n; i++) f[i] = f[i - 1] + nums[i];
// 求把 nums[L] 到 nums[R] 全部变成中位数的最小代价
auto gao = [&](int L, int R) {
// 找到中位数的下标
int mid = (L + R) / 2;
long long l = 1LL * nums[mid] * (mid - L + 1) - (f[mid] - f[L - 1]);
long long r = ((f[R] - f[mid]) - 1LL * nums[mid] * (R - mid));
return l + r;
};
int ans = 0;
// 滑动窗口
//i右端点j左端点
for (int i = 1, j = 1; i <= n; i++) {
while (j <= i && gao(j, i) > k) j++;
ans = max(ans, i - j + 1);
}
return ans;
}
};
–