正则表达式是计算机科学的一个概念。正则表达式使用单个字符串来描述、匹配一系列匹配某个句法规则的字符串。在很多文本编辑器里,正则表达式通常被用来检索、替换那些匹配某个模式的文本。
在Python中需要通过正则表达式对字符串进行匹配的时候,可以使用一个模块:re
# 导入re模块
import re
# 使用match方法进行匹配操作
result = re.match("正则表达式要匹配的字符串")
# 如果上一步匹配到数据的话,可以使用group方法来提取数据
result.group()
re.match 尝试从字符串的起始位置匹配一个模式,如果不是起始位置匹配成功的话,match()就返回none。
字符 | 功能 |
---|---|
. | 匹配任意1个字符(除了\n) |
[ ] | 匹配[ ]中列举的字符 |
\d | 匹配数字,即0-9 |
\D | 匹配非数字,即不是数字 |
\s | 匹配空白,即 空格,tab键 |
\S | 匹配非空白 |
\w | 匹配单词字符,即a-z、A-Z、0-9、_ |
\W | 匹配非单词字符 |
字符 | 功能 |
---|---|
* | 匹配前一个字符出现0次或者无限次,即可有可无 |
+ | 匹配前一个字符出现1次或者无限次,即至少有1次 |
? | 匹配前一个字符出现1次或者0次,即要么有1次,要么没有 |
{m} | 匹配前一个字符出现m次 |
{m,n} | 匹配前一个字符出现从m到n次 |
字符 | 功能 |
---|---|
^ | 匹配字符串开头 |
$ | 匹配字符串结尾 |
字符 | 功能 |
---|---|
| | 匹配左右任意一个表达式 |
(ab) | 将括号中字符作为一个分组 |
\num | 引用分组num匹配到的字符串 |
(?P<name>) | 分组起别名 |
(?P=name) | 引用别名为name分组匹配到的字符串 |
re.search 扫描整个字符串并返回第一个成功的匹配。
import re
ret = re.search(r"正则表达式", "正则表达式要匹配的字符串")
ret.group()
re.match只匹配字符串的开始,如果字符串开始不符合正则表达式,则匹配失败,函数返回None;而re.search匹配整个字符串,直到找到一个匹配。
在字符串中找到正则表达式所匹配的所有子串,并返回一个列表,如果没有找到匹配的,则返回空列表。
{{< admonition warning “注意” true >}}
match 和 search 是匹配一次 findall 匹配所有。
{{< /admonition >}}
import re
ret = re.findall(r"正则表达式", "正则表达式要匹配的字符串")
print(ret)
用于替换字符串中的匹配项。
import re
ret = re.sub(r"正则表达式", '替换的字符串', "正则表达式要匹配的字符串")
print(ret)
按照能够匹配的子串将字符串分割后返回列表
import re
ret = re.split(r"正则表达式","正则表达式要匹配的字符串")
print(ret)
Python里数量词默认是贪婪的(在少数语言里也可能是默认非贪婪),总是尝试匹配尽可能多的字符;非贪婪则相反,总是尝试匹配尽可能少的字符。在"*“,”?“,”+“,”{m,n}"后面加上?,使贪婪变成非贪婪。
正则表达式模式中使用到通配字,那它在从左到右的顺序求值时,会尽量“抓取”满足匹配最长字符串,在我们上面的例子里面,“.+”会从字符串的启始处抓取满足模式的最长字符,其中包括我们想得到的第一个整型字段的中的大部分,“\d+”只需一位字符就可以匹配,所以它匹配了数字“4”,而“.+”则匹配了从字符串起始到这个第一位数字4之前的所有字符。
解决方式:非贪婪操作符“?”,这个操作符可以用在"*“,”+“,”?"的后面,要求正则匹配的越少越好。
Python中字符串前面加上 r 表示原生字符串,与大多数编程语言相同,正则表达式里使用\
作为转义字符,这就可能造成反斜杠困扰。假如你需要匹配文本中的字符\
,那么使用编程语言表示的正则表达式里将需要4个反斜杠\
:前两个和后两个分别用于在编程语言里转义成反斜杠,转换成两个反斜杠后再在正则表达式里转义成一个反斜杠。Python里的原生字符串很好地解决了这个问题,有了原生字符串,你再也不用担心是不是漏写了反斜杠,写出来的表达式也更直观。