Java-API简析_java.util.concurrent.ThreadPoolExecutor类(基于 Latest JDK)(浅析源码)

发布时间:2024年01月05日

【版权声明】未经博主同意,谢绝转载!(请尊重原创,博主保留追究权)
https://blog.csdn.net/m0_69908381/article/details/135382255
出自【进步*于辰的博客

因为我发现目前,我对Java-API的学习意识比较薄弱,需要慢慢习惯使用Java-API,乃至剖析源码来提升自己的源码阅读能力和编码素质。
大家如果需要Java-API文档,我上传了【https://download.csdn.net/download/m0_69908381/87691693】。

1、概述

继承关系:

  • java.lang.Object
    • java.util.concurrent.AbstractExecutorService
      • java.util.concurrent.ThreadPoolExecutor

实现的所有接口
ExecutorExecutorService
已知直接子类:
ScheduledThreadPoolExecutor


public class ThreadPoolExecutor extends AbstractExecutorService

ExecutorService ,使用一个可能几个池线程执行每个提交的任务,通常使用Executors工厂方法进行配置。

线程池解决了两个不同的问题:它们通常在执行大量异步任务时提供改进的性能,这是由于减少了每个任务的调用开销,并且它们提供了一种绑定和管理资源的方法,包括执行集合时所消耗的线程。每个 ThreadPoolExecutor 还维护一些基本统计信息,如完成任务数。

为了在各种上下文中有用,该类提供了许多可调参数和可扩展性钩子。 但是,程序员被要求使用更方便的Executors工厂方法Executors.newCachedThreadPool() (无界线程池,具有自动线程回收)、Executors.newFixedThreadPool(int) (固定大小线程池)和Executors.newSingleThreadExecutor() (单个后台线程),为最常见的使用场景预配置设置。 否则,在手动配置和调整此类时,请使用以下指南:

核心和最大池大小
ThreadPoolExecutor 将根据 corePoolSize(核心,参见 getCorePoolSize())和 maximumPoolSize(最大池大小,参见 getMaximumPoolSize())设置的边界自动调整池大小。当新任务在方法 execute(java.lang.Runnable) 中提交时,如果运行的线程少于 corePoolSize,则创建新线程来处理请求,即使其他辅助线程是空闲的。如果运行的线程多于 corePoolSize 而少于 maximumPoolSize,则仅当队列满时才创建新线程。如果设置的 corePoolSizemaximumPoolSize 相同,则创建了固定大小的线程池。如果将 maximumPoolSize 设置为基本的无界值(如 Integer.MAX_VALUE),则允许池适应任意数量的并发任务。在大多数情况下,corePoolSizemaximumPoolSize仅基于构造来设置,不过也可以使用 setCorePoolSize(int)setMaximumPoolSize(int) 进行动态更改。

按需构造
默认情况下,即使核心线程最初只是在新任务需要时才创建和启动的,也可以使用方法 prestartCoreThread()prestartAllCoreThreads() 对其进行动态重写。

创建新线程
使用 ThreadFactory 创建新线程。如果没有另外说明,则在同一个 ThreadGroup 中一律使用 Executors.defaultThreadFactory() 创建线程,并且这些线程具有相同的 NORM_PRIORITY 优先级和非守护进程状态。通过提供不同的 ThreadFactory,可以改变线程的名称、线程组、优先级、守护进程状态等等。如果 ThreadFactory 未能创建一个线程,当访问 newThreadnull时,程序将继续运行,但可能无法执行任何任务。
使用池的工作线程或其他线程应具备“modifythread”权限(RuntimePermission 权限)。如果不具有此权限,服务可能会被降级,配置更改可能不会及时生效,并且关闭池可能处于终止状态,即未完成。

保持活动时间
如果池中当前有多于 corePoolSize 的线程,则这些多出的线程在空闲时间超过 keepAliveTime 时将会终止(参见 getKeepAliveTime(java.util.concurrent.TimeUnit))。这提供了当池处于非活动状态时减少资源消耗的方法。如果池后来变得更为活动,则可以创建新的线程。也可以使用方法 setKeepAliveTime(long, java.util.concurrent.TimeUnit) 动态地更改此参数。使用 Long.MAX_VALUETimeUnit.NANOSECONDS 的值在关闭前有效地从以前的终止状态禁用空闲线程。

排队
所有 BlockingQueue 都可用于传输和保持提交的任务。可以使用此队列与池大小进行交互:

  • 如果运行的线程少于 corePoolSize,则 Executor 始终首选添加新的线程,而不进行排队。
  • 如果运行的线程等于或多于 corePoolSize,则 Executor 始终首选将请求加入队列,而不添加新的线程。
  • 如果无法将请求加入队列,则创建新的线程,除非创建此线程超出 maximumPoolSize,在这种情况下,任务将被拒绝。
排队有三种通用策略:
  1. 直接提交。工作队列的默认选项是 SynchronousQueue,它将任务直接提交给线程而不保持它们。在此,如果不存在可用于立即运行任务的线程,则试图把任务加入队列将失败,因此会构造一个新的线程。此策略可以避免在处理可能具有内部依赖性的请求集合时出现锁定。直接提交通常要求无界 maximumPoolSizes 以避免拒绝新提交的任务。当命令以超过队列所能处理的平均数连续到达时,此策略允许无界线程具有增长的可能性。
  1. 无界队列。使用无界队列(例如,不具有预定义容量的 LinkedBlockingQueue)将导致在所有 corePoolSize 线程都忙的情况下将新任务加入队列。这样,创建的线程就不会超过 corePoolSize(因此,maximumPoolSize 的值也就无效了)。当每个任务完全独立于其他任务,即任务执行互不影响时,适合于使用无界队列;例如,在 Web 页服务器中。这种排队可用于处理瞬态突发请求,当命令以超过队列所能处理的平均数连续到达时,此策略允许无界线程具有增长的可能性。
  1. 有界队列。当使用有限的 maximumPoolSizes 时,有界队列(如 ArrayBlockingQueue)有助于防止资源耗尽,但是可能较难调整和控制。队列大小和最大池大小可能需要相互折中:使用大型队列和小型池可以最大限度地降低 CPU 使用率、操作系统资源和上下文切换开销,但是可能导致人工降低吞吐量。如果任务频繁阻塞(例如,如果它们是 I/O 边界),则系统可能为超过您许可的更多线程安排时间。使用小型队列通常要求较大的池大小,CPU 使用率较高,但是可能遇到不可接受的调度开销,这样也会降低吞吐量。

被拒绝的任务
当 Executor 已经关闭,并且 Executor 将有限边界用于最大线程和工作队列容量,且已经饱和时,在方法 execute(java.lang.Runnable) 中提交的新任务将被拒绝。在以上两种情况下,execute()都将调用其 RejectedExecutionHandlerRejectedExecutionHandler.rejectedExecution(java.lang.Runnable, java.util.concurrent.ThreadPoolExecutor) 方法。下面提供了四种预定义的处理程序策略:

  1. 在默认的 ThreadPoolExecutor.AbortPolicy 中,处理程序遭到拒绝将抛出运行时 RejectedExecutionException
  2. ThreadPoolExecutor.CallerRunsPolicy 中,线程调用运行该任务的 execute 本身。此策略提供简单的反馈控制机制,能够减缓新任务的提交速度。
  3. ThreadPoolExecutor.DiscardPolicy 中,不能执行的任务将被删除。
  4. ThreadPoolExecutor.DiscardOldestPolicy 中,如果执行程序尚未关闭,则位于工作队列头部的任务将被删除,然后重试执行程序(如果再次失败,则重复此过程)。
    定义和使用其他种类的 RejectedExecutionHandler 类也是可能的,但这样做需要非常小心,尤其是当策略仅用于特定容量或排队策略时。

挂钩方法
此类提供 protected 可重写的 beforeExecute(java.lang.Thread, java.lang.Runnable)afterExecute(java.lang.Runnable, java.lang.Throwable) 方法,这两种方法分别在执行每个任务之前和之后调用。它们可用于操纵执行环境。例如,重新初始化 ThreadLocal、搜集统计信息或添加日志条目。此外,还可以重写方法 terminated() 来执行 Executor 完全终止后需要完成的所有特殊处理。

如果挂钩或回调方法抛出异常,则内部辅助线程将依次失败并突然终止。

队列维护
方法 getQueue() 允许出于监控和调试目的而访问工作队列。强烈反对出于其他任何目的而使用此方法。remove(java.lang.Runnable)purge() 这两种方法可用于在取消大量已排队任务时帮助进行存储回收。

扩展示例。此类的大多数扩展可以重写一个或多个受保护的挂钩方法。例如,下面是一个添加了简单的暂停/恢复功能的子类:

classclass PausableThreadPoolExecutor extends ThreadPoolExecutor {
    private boolean isPaused;
    private ReentrantLock pauseLock = new ReentrantLock();
    private Condition unpaused = pauseLock.newCondition();

    public PausableThreadPoolExecutor(...) {
        super(...);
    }

    protected void beforeExecute(Thread t, Runnable r) {
        super.beforeExecute(t, r);
        pauseLock.lock();
        try {
            while (isPaused) unpaused.await();
        } catch (InterruptedException ie) {
            t.interrupt();
        } finally {
            pauseLock.unlock();
        }
    }

    public void pause() {
        pauseLock.lock();
        try {
            isPaused = true;
        } finally {
            pauseLock.unlock();
        }
    }

    public void resume() {
        pauseLock.lock();
        try {
            isPaused = false;
            unpaused.signalAll();
        } finally {
            pauseLock.unlock();
        }
    }
}

从以下版本开始:
1.5

2、嵌套类摘要

2.1 static class ThreadPoolExecutor.AbortPolicy

用于被拒绝任务的处理程序,它将抛出 RejectedExecutionException.

2.2 static class ThreadPoolExecutor.CallerRunsPolicy

用于被拒绝任务的处理程序,它直接在 execute 方法的调用线程中运行被拒绝的任务;如果执行程序已关闭,则会丢弃该任务。

2.3 static class ThreadPoolExecutor.DiscardOldestPolicy

用于被拒绝任务的处理程序,它放弃最旧的未处理请求,然后重试 execute;如果执行程序已关闭,则会丢弃该任务。

2.4 static class ThreadPoolExecutor.DiscardPolicy

用于被拒绝任务的处理程序,默认情况下它将放弃被拒绝的任务。

3、构造方法摘要

3.1 int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue

用给定的初始参数和默认的线程工厂及处理程序创建新的 ThreadPoolExecutor。

3.2 int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, RejectedExecutionHandler handler

用给定的初始参数创建新的 ThreadPoolExecutor。

3.3 int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory

用给定的初始参数创建新的 ThreadPoolExecutor。

3.4 int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory, RejectedExecutionHandler handler

用给定的初始参数创建新的 ThreadPoolExecutor。


本文持续更新中。。。

文章来源:https://blog.csdn.net/m0_69908381/article/details/135382255
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。