string的模拟实现

发布时间:2024年01月08日


msvc和g++下的string内存比较

int main()
{
    std::string str1("HelloWorld");

    std::string str2("HelloWorldHelloWorld");

    cout << sizeof(str1) << " " << sizeof(str2) << endl;
    return 0;
}

在windows下使用vs2022 x64运行输出都为40字节:调试上面程序,在自动窗口中观察str1和str2的原始视图:
在这里插入图片描述

发现buf是包含16个字符的数组,里面存放了字符串,ptr为空,size和res分别为字符个数和容量。

而查看str2的字符串视图:发现buf数组为随机值,ptr指向实际的字符串,size和res分别为字符个数和容量。

在这里插入图片描述

MSVC编译器使用的string类内存模型可大概表示如下:

class string
{
private:
    char _buf[16];
    char* _ptr;
    size_t _size;
    size_t _capacity;
};

在64位下是40字节。


在g++11.4.0版本下运行结果为32字节。可以验证g++和vs2022的msvc都没有使用写拷贝:

int main() {
    string str1("hello world");

    string str2(str1);

    cout << (void *) str1.c_str() << endl; // 0xe8ce3ff7e0
    cout << (void *) str2.c_str() << endl; // 0xe8ce3ff7c0

    return 0;
}

现在我们来探索一下g++下的string内存结构:

int main() {
    std::string s1 = "HelloWorld";
    std::string s2 = "HelloWorldHelloWorld";
    std::string s3 = "HelloWorldHelloWorldHelloWorld";

    cout << (void *) &s1 << " " << (void *) s1.c_str() << endl;
    cout << (void *) &s2 << " " << (void *) s2.c_str() << endl;
    cout << (void *) &s3 << " " << (void *) s3.c_str() << endl;

    return 0;
}
# 观察到s1的内存
0x00000000005ffe10   20 fe 5f 00   00 00 00 00   │  ·_····· │ 
0x00000000005ffe18   0a 00 00 00   00 00 00 00   │ ········ │
0x00000000005ffe20   48 65 6c 6c   6f 57 6f 72   │ HelloWor │
0x00000000005ffe28   6c 64 00 00   01 00 00 00   │ ld······ │
---------------------------------------------------------------------
# 观察到s2的内存
0x00000000005ffdf0   40 47 70 00   00 00 00 00   │ @Gp····· │
0x00000000005ffdf8   14 00 00 00   00 00 00 00   │ ········ │
0x00000000005ffe00   14 00 00 00   00 00 00 00   │ ········ │
0x00000000005ffe08   45 15 8c be   f7 7f 00 00   │ E······· │
    # s2指向的字符串
0x0000000000704740   48 65 6c 6c   6f 57 6f 72   │ HelloWor │
0x0000000000704748   6c 64 48 65   6c 6c 6f 57   │ ldHelloW │
0x0000000000704750   6f 72 6c 64   00 ab ab ab   │ orld···· │ 
---------------------------------------------------------------------    
# 观察到s3的内存
0x00000000005ffdd0   90 47 70 00   00 00 00 00   │ ·Gp····· │ # 指向字符数组
0x00000000005ffdd8   1e 00 00 00   00 00 00 00   │ ········ │ # size
0x00000000005ffde0   1e 00 00 00   00 00 00 00   │ ········ │ # capacity
0x00000000005ffdd8   00 00 00 00   00 00 00 00   │ ········ │
	# s3指向的字符串
0x0000000000704790   48 65 6c 6c   6f 57 6f 72   │ HelloWor │
0x0000000000704798   6c 64 48 65   6c 6c 6f 57   │ ldHelloW │
0x00000000007047a0   6f 72 6c 64   48 65 6c 6c   │ orldHell │
0x00000000007047a8   6f 57 6f 72   6c 64 00 ab   │ oWorld·· │

观察上面3个string对象我们知道,第一个成员是char*的_str,指向保存的字符串地址。第二个成员是size。如果是小于等于15个字符,则后面16个字节保存短字符串。如果是大于15个字符的字符串,则第三个成员保存capacity容量,第四个成员则没有意义。

// 短字符串
class string {
private:
    char* _str;
    size_t _size;
    char _buf[16];
};

// 长字符串
class string {
private:
    char* _str;
    size_t _size;
    size_t _capacity;
    size_t _reserve;
};

验证猜想:

int main() {
    std::string s1 = "HelloWorldHello";
    std::string s2 = "HelloWorldHelloWorld";
    std::string s3 = "HelloWorldHelloWorldHelloWorld";

    cout << (void *) &s1 << " " << (void *) s1.c_str() << " " << s1.size() << " " << s1.capacity() << endl;
    cout << (void *) &s2 << " " << (void *) s2.c_str() << " " << s2.size() << " " << s2.capacity() << endl;
    cout << (void *) &s3 << " " << (void *) s3.c_str() << " " << s3.size() << " " << s3.capacity() << endl;

    s1.push_back('*'); // 插入数据扩容
    cout << (void *) &s1 << " " << (void *) s1.c_str() << " " << s1.size() << " " << s1.capacity() << endl;


    s3.push_back('*'); // 插入数据扩容
    cout << (void *) &s3 << " " << (void *) s3.c_str() << " " << s3.size() << " " << s3.capacity() << endl;

    return 0;
}
/*
0xdd031ffde0 0xdd031ffdf0 15 15    # 扩容前s1
0xdd031ffdc0 0x2a486af25b0 20 20   # s2
0xdd031ffda0 0x2a486af6820 30 30   # s3
0xdd031ffde0 0x2a486af7860 16 30   # 扩容后s1
0xdd031ffda0 0x2a486af7890 31 60   # 扩容后s3
*/

成员变量

为了简单模拟字符串,我们不像g++和msvc一样保留对短字符串的处理,我们定义如下几个变量:

namespace my_std
{
    class string
    {
    private:
        char* _str; // 字符串数组
        size_t _size;
        size_t _capacity;

        static const size_t npos;
    };

    const size_t string::npos = -1;
}
// size:当前有效字符的个数
// capacity:最大能容纳的有效字符的个数,不包括\0

在自己的命名空间 my_std 中实现,防止与std冲突。

下面我们将模拟g++下的string,可以对照g++的string输出作为参考。

构造函数与析构函数

std标准库中string构造函数的使用:

int main() {
    std::string s1 = "HelloWorldHello";
    std::string s2 = "HelloWorldHelloWorld";
    std::string s3 = "HelloWorldHelloWorldHelloWorld";

    cout << (void *) &s1 << " " << (void *) s1.c_str() << " " << s1.size() << " " << s1.capacity() << endl;
    cout << (void *) &s2 << " " << (void *) s2.c_str() << " " << s2.size() << " " << s2.capacity() << endl;
    cout << (void *) &s3 << " " << (void *) s3.c_str() << " " << s3.size() << " " << s3.capacity() << endl;
    return 0;
}
/*
0x84b4fff660 0x84b4fff670 15 15
0x84b4fff640 0x23a3caa25b0 20 20
0x84b4fff620 0x23a3caa6820 30 30
*/

我们模拟实现如下:这里的默认参数旨在一个string空对象的正确打印。

string(const char* str = "")
    : _size(strlen(str))
{
    _capacity = (_size <= 15) ? 15 : _size;

    _str = new char[_capacity + 1];
    strcpy(_str, str);
}

如果是短字符串,我们将容量设置为15。如果是长字符串,容量设置为实际长度。

这里需要注意strcpy会拷贝 '\0'


下面是析构函数实现:因为构造函数中我们保证了容量至少是15,并且下面的实现resize中即使缩容也不会影响capacity实际容量,因此 _str不会为空。可以不加 _str 为空的判断。

~string()
{
    delete[] _str;
    _str = nullptr;
    _size = _capacity = 0;
}

拷贝构造函数

先看标准库中string的使用:

void test() {
    std::string str = "helloworldhelloworld";
    cout << str.size() << " " << str.capacity() << " " << (void *) str.c_str() << endl; // 20 20 0x18ff84f25b0

    str.push_back('#');
    cout << str.size() << " " << str.capacity() << " " << (void *) str.c_str() << endl; // 21 40 0x18ff84f7830

    std::string str1 = str;
    cout << str1.size() << " " << str1.capacity() << " " << (void *) str1.c_str() << endl; // 21 21 0x18ff84f25b0

}

int main() {
    test();
    return 0;
}

可以观察到拷贝构造的str1的size和capacity都等于str的size,因此可以实现如下:

string(const string& s)
{
    // apply the new space
    _size = s._size;
    _capacity = s._size;
    _str = new char[_capacity + 1];

    // copy str
    strcpy(_str, s.c_str());
}

赋值拷贝

先看g++下的赋值拷贝:

void test() {
    string str = "helloworldhelloworld";
    cout << "str:" << str.size() << " " << str.capacity() << " " << (void *) str.c_str() << endl;

    str.push_back('#');
    cout << "str插入#:" << str.size() << " " << str.capacity() << " " << (void *) str.c_str() << endl;

    string str1;
    cout << "str1扩容前:" << str1.size() << " " << str1.capacity() << " " << (void *) str1.c_str() << endl;

    string str2 = "Hello";
    cout << str2.size() << " " << str2.capacity() << " " << (void *) str2.c_str() << endl;

    // 短字符串 原地复制
    str1 = str2;
    cout << "str1短字符串原地复制:" << str1.size() << " " << str1.capacity() << " " << (void *) str1.c_str() << endl;

    // 长字符串 两倍扩容
    str1 = str;
    cout << "str1长字符串两倍扩容:" << str1.size() << " " << str1.capacity() << " " << (void *) str1.c_str() << endl;

    str += "helloworldhelloworld";
    cout << str.size() << " " << str.capacity() << " " << (void *) str.c_str() << endl;

    // 长字符串 两倍扩容不够 扩容到s.size()
    string str3;
    cout << "str3扩容前:" << str3.size() << " " << str3.capacity() << " " << (void *) str3.c_str() << endl;
    str3 = str;
    cout << "str3扩容后:" << str3.size() << " " << str3.capacity() << " " << (void *) str3.c_str() << endl;

}

int main() {
    test();
    return 0;
}
/*
str:20 20 0x17f061725b0
str插入#:21 40 0x17f06177830
str1扩容前:0 15 0x4dc55ffbc0
5 15 0x4dc55ffba0
str1短字符串原地复制:5 15 0x4dc55ffbc0
str1长字符串两倍扩容:21 30 0x17f061725b0
41 80 0x17f06177870
str3扩容前:0 15 0x4dc55ffb80
str3扩容后:41 41 0x17f06177830
*/

在等号赋值的过程中,如果赋值的字符串较短,则在原来的内存空间中直接复制。否则发生扩容,如果两倍扩容不够,则扩容到s._size。

string& operator=(const string& s)
{
    if (&s != this)
    {
        if (s._size > _capacity)
        {
            // 两倍扩容不够,则扩容到s._size
            _capacity = (s._size > 2 * _capacity) ? s._size : 2 * _capacity;

            delete[] _str;
            _str = new char[_capacity + 1];
        }

        strcpy(_str, s._str);
        _size = s._size;
    }
    return *this;
}

下面写了reserve函数之后可以修改为:代码上更简洁,但是多了一次拷贝。

string& operator=(const string& s)
{
    if (&s != this)
    {
		reserve(s._size);
        strcpy(_str, s._str);
        _size = s._size;
    }
    return *this;
}

c_str、size和capacity函数以及重载[]、clear、expand_capacity

const char* c_str() const
{
    return _str;
}

size_t size() const
{
    return _size;
}

size_t capacity() const
{
    return _capacity;
}

char& operator[](size_t pos)
{
    assert(pos < _size);

    return _str[pos];
}

const char& operator[](size_t pos) const
{
    assert(pos < _size);

    return _str[pos];
}

这里还专门针对const string对象写了重载[]的const成员函数。


void expand_capacity(std::string &str) {
    size_t old_capacity = str.capacity();
    cout << "init capacity: " << old_capacity << endl;
    for (int i = 0; i < 100; ++i) {
        str.append("h");
        //str.push_back('h');
        if (old_capacity != str.capacity()) {
            old_capacity = str.capacity();
            cout << "expand capacity: " << old_capacity << endl;
        }
    }
}

int main() {
    string str;
    expand_capacity(str);
    cout << str.size() << " " << str.capacity() << endl;
    str.clear();
    cout << str.size() << " " << str.capacity() << endl;
    return 0;
}
/*
init capacity: 15
expand capacity: 30
expand capacity: 60
expand capacity: 120
100 120
0 120
*/

clear函数将size置0,容量保留:

void clear()
{
    _str[0] = '\0';
    _size = 0;
}

迭代器与遍历

class string
{
public:
    typedef char* iterator;

    iterator begin()
    {
        return _str;
    }

    iterator end()
    {
        return _str + _size;
    }
}

测试:

int main()
{
    // 遍历测试

    string str1("hello world");
    cout << str1.c_str() << endl;

    for (size_t i = 0; i < str1.size(); ++i)
    {
        cout << str1[i] << " ";
    }
    cout << endl;

    string::iterator it = str1.begin();
    while (it != str1.end())
    {
        cout << *it << " ";
        ++it;
    }
    cout << endl;

    for (auto ch : str1)
    {
        cout << ch << " ";
    }
    cout << endl;

    return 0;
}

reserve

void test() {
    string s = "hello";
    cout << s.size() << " " << s.capacity() << " " << s << endl;

    s.reserve(5);
    cout << "(05)" << s.size() << " " << s.capacity() << " " << s << endl;

    s.reserve(18);
    cout << "(18)" <<  s.size() << " " << s.capacity() << " " << s << endl;

    s.reserve(61);
    cout << "(61)" <<  s.size() << " " << s.capacity() << " " << s << endl;
}


int main() {

    test();
    return 0;
}
/*
5 15 hello
(05)5 15 hello
(18)5 30 hello
(61)5 61 hello
*/

标准库中的reserve函数的使用,reserve参数如果比capacity小,则没有变化。reserve参数比capacity大,发生扩容,如果两倍扩容不够,则扩容到输入的参数。

void reserve(size_t n)
{
    if (n > _capacity)
    {
        // 两倍扩容不够,则扩容到n
        _capacity = (n > 2 * _capacity) ? n : 2 * _capacity;

        char* tmp = new char[_capacity + 1];
        strcpy(tmp, _str);

        delete[] _str;
        _str = tmp;
    }
}

push_back、append、+=

void push_back(char ch)
{
    /*if (_size == _capacity)
    {
        reserve(_capacity * 2);
    }*/

    reserve(_size + 1);

    _str[_size++] = ch;
    _str[_size] = '\0';
}

void append(const char* str)
{
    size_t len = strlen(str);
    reserve(_size + len);

    strcpy(_str + _size, str);
    _size += len;
}

string& operator+=(const char* str)
{
    append(str);
    return *this;
}

string& operator+=(char ch)
{
    push_back(ch);
    return *this;
}

值得说的是,有了上面的reserve,我们在扩容时,代码上就可以更简洁,不用进行 _size == _capacity 的判断:

void push_back(char ch)
{
    /*if (_size == _capacity)
    {
        reserve(_capacity * 2);
    }*/

    reserve(_size + 1);

    _str[_size++] = ch;
    _str[_size] = '\0';
}

insert

要从 '\0' 开始向后移动,使用时注意while循环对size_t类型的判断,避免导致死循环:

void insert(size_t pos, char ch)
{
    assert(pos <= _size);
    
    reserve(_size + 1);

    /*
    size_t end = _size; // from '\0' start
    while (end >= pos)  // when pos=0, while loop will not exit
    {
        _str[end + 1] = _str[end];
        --end;
    }
    */

    size_t end = _size + 1; // from '\0' next pos start
    while (end > pos)
    {
        _str[end] = _str[end - 1];
        --end;
    }

    _str[pos] = ch;
    _size++;
}

下面是插入字符串str:

void insert(size_t pos, const char* str)
{
    assert(pos <= _size);

    size_t len = strlen(str);

    reserve(_size + len);

    // 向后挪动数据
    size_t end = _size + 1; // from '\0' next pos start
    while (end > pos)
    {
        _str[end - 1 + len] = _str[end - 1];
        --end;
    }

    // 拷贝数据
    /*for (int i = 0; i < len; ++i)
    {
        _str[i + pos] = str[i];
    }*/

    strncpy(_str + pos, str, len);

    _size += len;
}

这里使用 strncpy 指定拷贝的字节数。

字符串比较运算符

bool operator<(const string& s) const
{
    return strcmp(_str, s._str) < 0;
}

bool operator==(const string& s) const
{
    return strcmp(_str, s._str) == 0;
}

bool operator<=(const string& s) const
{
    return *this < s || *this == s;
}

bool operator>(const string& s) const
{
    return !(*this <= s);
}

bool operator>=(const string& s) const
{
    return !(*this < s);
}

bool operator!=(const string& s) const
{
    return !(*this == s);
}

erase

void erase(size_t pos, size_t len = npos)
{
    assert(pos < _size);
    if (len == npos || pos + len >= _size)
    {
        // 从pos删除到结尾
        _str[pos] = '\0';
        _size = pos;
    }
    else
    {
        // 从pos删除len长度个
        strcpy(_str + pos, _str + pos + len);
        _size -= len;
    }
}

验证:

int main()
{
    string str1("helloworld");
    cout << str1 << " " << str1.size() << " " << str1.capacity() << endl;

    str1.erase(6);
    cout << str1 << " " << str1.size() << " " << str1.capacity() << endl;

    str1.erase(0);
    cout << str1 << " " << str1.size() << " " << str1.capacity() << endl;

    return 0;
}

/*
helloworld 10 15
hellow 6 15
 0 15
*/

<<流提取 >>流插入

将<<和 >> 重载为全局函数,放在my_std命名空间中:

std::ostream& operator <<(std::ostream& out, const string& s)
{
    out << s.c_str();
    return out;
}

使用 istream::get() 方法,每次读取一个字符进行插入。

std::istream& operator>>(std::istream& in, string& s)
{
    s.clear();

    char ch;
    // in >> ch;
    ch = in.get(); // istream::get()
    while (ch != ' ' && ch != '\n')
    {
        s += ch;
        ch = in.get();
    }

    return in;
}

每次字符串执行+= s += ch; 效率太低,我们加入buf,提高插入的效率:

std::istream& operator>>(std::istream& in, string& s)
{
    s.clear();

    char buf[128] = { '\0' };
    size_t i = 0;

    char ch;
    // in >> ch;
    ch = in.get(); // istream::get()
    while (ch != ' ' && ch != '\n')
    {
        //s += ch;
        if (i == 127)
        {
            s += buf;
            i = 0;
        }
        buf[i] = ch;
        i++;

        ch = in.get();
    }

    if (i >= 0)
    {
        buf[i] = '\0';
        s += buf;
    }

    return in;
}

resize

cplusplus的resize

void resize (size_t n);
void resize (size_t n, char c);
int main()
{
    //test_main();
    string s1("hello world");
    cout << s1 << " " << s1.size() << " " << s1.capacity() << endl;

    s1.resize(5);
    cout << s1 << " " << s1.size() << " " << s1.capacity() << endl;

    s1.resize(50, 'x');
    cout << s1 << " " << s1.size() << " " << s1.capacity() << endl;

    return 0;
}
/*
hello world 11 15
hello 5 15
helloxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 50 50
*/

假设有字符串 str = "hello world" 的size为11,capacity为10。

针对以下三种参数调整空间:

1.当n=5时,也就是n<=size,可以直接令 str[5] = '\0',size变为5,容量不变。

2.当n=15时,也就是n>size,需要插入数据,直接调用reserve扩容为n个空间,然后将剩下的插入指定字符c。

我们自己实现的resize:

void resize(size_t n, char ch = '\0')
{
    if (n <= _size)
    {
        _str[n] = '\0';
        _size = n;
    }
    else
    {
        reserve(n);
        while (_size < n)
        {
            _str[_size] = ch;
            ++_size;
        }

        _str[_size] = '\0';
    }
}

find

find返回指定字符或者字符串从pos开始的下标:

size_t find(char ch, size_t pos = 0)
{
    for (size_t i = pos; i < _size; i++)
    {
        if (_str[i] == ch)
        {
            return i;
        }
    }
    return npos;
}

size_t find(const char* sub, size_t pos = 0)
{
    const char* p = strstr(_str + pos, sub);
    if (p)
    {
        return p - _str;
    }
    else
    {
        return npos;
    }
}

substr

cplusplus.com/reference/string/string/substr/

string substr (size_t pos = 0, size_t len = npos) const;

实现如下:

string substr(size_t pos, size_t len = npos)
{
    string s;
    size_t end = pos + len;
    if (len == npos || end >= _size) // 取到结尾
    {
        // len为字串的size
        len = _size - pos; // end >=_size
        end = _size;
    }

    s.reserve(len);
    for (size_t i = pos; i < end; i++)
    {
        s += _str[i];
    }

    return s;
}

值得说的是从pos开始指定取的len如果太长超过结尾,则需要修正取到的len的大小。

源码地址

https://github.com/shlyyy/stl/blob/main/my_string.h

https://gitee.com/shlyyy/stl/blob/master/my_string.h

文章来源:https://blog.csdn.net/ArthurHai521/article/details/135447218
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。