LeetCode刷题--- 按摩师

发布时间:2024年01月12日

个人主页:元清加油_【C++】,【C语言】,【数据结构与算法】-CSDN博客

个人专栏

力扣递归算法题

?http://t.csdnimg.cn/yUl2I

【C++】? ??

??????http://t.csdnimg.cn/6AbpV

数据结构与算法

????http://t.csdnimg.cn/hKh2l


前言:这个专栏主要讲述动态规划算法,所以下面题目主要也是这些算法做的 ?

我讲述题目会把讲解部分分为3个部分:
1、题目解析

2、算法原理思路讲解

3、代码实现


按摩师

题目链接:按摩师

题目

一个有名的按摩师会收到源源不断的预约请求,每个预约都可以选择接或不接。在每次预约服务之间要有休息时间,因此她不能接受相邻的预约。给定一个预约请求序列,替按摩师找到最优的预约集合(总预约时间最长),返回总的分钟数。

注意:本题相对原题稍作改动

示例 1:

输入: [1,2,3,1]
输出: 4
解释: 选择 1 号预约和 3 号预约,总时长 = 1 + 3 = 4。

示例 2:

输入: [2,7,9,3,1]
输出: 12
解释: 选择 1 号预约、 3 号预约和 5 号预约,总时长 = 2 + 9 + 1 = 12。

示例 3:

输入: [2,1,4,5,3,1,1,3]
输出: 12
解释: 选择 1 号预约、 3 号预约、 5 号预约和 8 号预约,总时长 = 2 + 4 + 3 + 3 = 12。

解法

算法原理讲解

我们这题使用动态规划,我们做这类题目可以分为以下五个步骤

  1. 状态显示
  2. 状态转移方程
  3. 初始化(防止填表时不越界)
  4. 填表顺序
  5. 返回值
  • 状态显示
dp[i] 表示 :选择到 i 位置时,此时的最?预约时?。
但是我们这个题在 i 位置的时候,会?临「选择」或者「不选择」两种抉择,所依赖的状态需要细分:
  • f[i] 表示:选择到 i 位置时, nums[i] 必选,此时的最?预约时?;
  • g[i] 表示:选择到 i 位置时, nums[i] 不选,此时的最?预约时?。
  • 状态转移方程
因为状态表?定义了两个,因此我们的状态转移?程也要分析两个:
  • 对于 f[i] 如果 nums[i] 必选,那么我们仅需知道 i - 1 位置在不选的情况下的最?预约时?, 然后加上 nums[i] 即可,因此 f[i] = g[i - 1] + nums[i]
  • 对于 g[i] 如果 nums[i] 不选,那么 i - 1 位置上选或者不选都可以。因此,我们需要知道 i - 1 位置上选或者不选两种情况下的最?时?,因此 g[i] = max(f[i - 1], g[i-1])。
  • 初始化(防止填表时不越界)
这道题的初始化?较简单,因此?需加辅助节点,仅需初始化 f[0] = nums[0], g[0] = 0
即可。
  • 填表顺序
根据「状态转移?程」得「从左往右,两个表?起填」。
  • 返回值
根据「状态表?」,应该返回 max(f[n - 1], g[n - 1])

代码实现

class Solution {
public:
    int massage(vector<int>& nums) 
    {
        int n = nums.size();
        if(n == 0) return 0; // 处理边界条件

        vector<int> f(n);
        auto g = f;
        f[0] = nums[0];
        for(int i = 1; i < n; i++)
        {
            f[i] = g[i - 1] + nums[i];
            g[i] = max(f[i - 1], g[i - 1]);
        }
        return max(f[n - 1], g[n - 1]);
    }
};

文章来源:https://blog.csdn.net/weixin_74268082/article/details/135545015
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。