C 代表 Consistency,一致性,是指所有节点在同一时刻的数据是相同的,即更新操作执行结束并响应用户完成后,所有节点存储的数据会保持相同。
A 代表 Availability,可用性,是指系统提供的服务一直处于可用状态,对于用户的请求可即时响应。
P 代表 Partition Tolerance,分区容错性,是指在分布式系统遇到网络分区的情况下,仍然可以响应用户的请求。网络分区是指因为网络故障导致网络不连通,不同节点分布在不同的子网络中,各个子网络内网络正常。
CAP 理论指的就是,在分布式系统中 C、A、P 这三个特征不能同时满足,只能满足其中两个,如下图所示。
网络中有两台服务器 Server1 和 Server2,分别部署了数据库 DB1 和 DB2,这两台机器组成一个服务集群,DB1 和 DB2 两个数据库中的数据要保持一致,共同为用户提供服务。用户 User1 可以向 Server1 发起查询数据的请求,用户 User2 可以向服务器 Server2 发起查询数据的请求,它们共同组成了一个分布式系统。
对这个系统来说,分别满足 C、A 和 P 指的是:
用户 User1 向服务器 Server1 发起请求,将数据库 DB1 中的数据 a 由 1 改为 2;
系统会进行数据同步,即图中的 S 操作,将 Server1 中 DB1 的修改同步到服务器 Server2 中,使得 DB2 中的数据 a 也被修改为 2;
当 User2 向 Server2 发起读取数据 a 的请求时,会得到 a 最新的数据值 2。
这其实是在网络环境稳定、系统无故障的情况下的工作流程。但在实际场景中,网络环境不可能百分之百不出故障,比如网络拥塞、网卡故障等,会导致网络故障或不通,从而导致节点之间无法通信,或者集群中节点被划分为多个分区,分区中的节点之间可通信,分区间不可通信。
这种由网络故障导致的集群分区情况,通常被称为“网络分区”。在分布式系统中,网络分区不可避免,因此分区容错性 P 必须满足。接下来,我们就来讨论一下在满足分区容错性 P 的情况下,一致性 C 和可用性 A 是否可以同时满足。
假设,Server1 和 Server2 之间网络出现故障,User1 向 Server1 发送请求,将数据库 DB1 中的数据 a 由 1 修改为 2,而 Server2 由于与 Server1 无法连接导致数据无法同步,所以 DB2 中 a 依旧是 1。这时,User2 向 Server2 发送读取数据 a 的请求时,Server2 无法给用户返回最新数据,那么该如何处理呢?
如果一个分布式场景需要很强的数据一致性,或者该场景可以容忍系统长时间无响应的情况下,保 CP 弃 A 这个策略就比较适合。
保证 CP 的系统有很多,典型的有 Redis、HBase、ZooKeeper 等。接下来,我就以 ZooKeeper 为例,带你了解它是如何保证 CP 的。
首先,我们看一下 ZooKeeper 架构图。
ZooKeeper 集群包含多个节点(Server),这些节点会通过分布式选举算法选出一个 Leader 节点。在 ZooKeeper 中选举 Leader 节点采用的是 ZAB 算法。在 ZooKeeper 集群中,Leader 节点之外的节点被称为 Follower 节点。
Leader 节点会专门负责处理用户的写请求:
当用户向节点发送写请求时,如果请求的节点刚好是 Leader,那就直接处理该请求;
如果请求的是 Follower 节点,那该节点会将请求转给 Leader,然后 Leader 会先向所有的 Follower 发出一个 Proposal,等超过一半的节点同意后,Leader 才会提交这次写操作,从而保证了数据的强一致性。
具体示意图如下所示:
当出现网络分区时,如果其中一个分区的节点数大于集群总节点数的一半,那么这个分区可以再选出一个 Leader,仍然对用户提供服务,但在选出 Leader 之前,不能正常为用户提供服务;如果形成的分区中,没有一个分区的节点数大于集群总节点数的一半,那么系统不能正常为用户提供服务,必须待网络恢复后,才能正常提供服务。
这种设计方式保证了分区容错性,但牺牲了一定的系统可用性。
**适合保证 AP 放弃 C 的场景有很多。**比如,很多查询网站、电商系统中的商品查询等,用户体验非常重要,所以大多会保证系统的可用性,而牺牲一定的数据一致性。
目前,采用保 AP 弃 C 的系统也有很多,比如 CoachDB、Eureka、Cassandra、DynamoDB 等。
首先,我们看一下 CAP 中的 C 和 ACID 中的 C 是否一致。
其次,我们看一下 CAP 中的 A 和 ACID 中的 A。
CAP 中的 A 指的是可用性(Availability),也就是系统提供的服务一直处于可用状态,即对于用户的请求可即时响应。
ACID 中的 A 指的是原子性(Atomicity),强调的是事务要么执行成功,要么执行失败。
BASE理论是对CAP理论的一种实践指导原则,提出在分布式系统中更加灵活的一致性模型。具体来说:
BASE理论相对于严格的ACID(原子性、一致性、隔离性、持久性)事务模型,提倡在分布式系统中使用更灵活的一致性模型。它允许系统在一段时间内处于不一致的状态,以获得更高的可用性和性能。