iloc
是 Pandas 中用于基于整数位置进行索引和切片的方法。它允许你通过整数位置来访问 DataFrame 中的特定行和列。
语法格式如下:
DataFrame.iloc[row_indexer, column_indexer]
row_indexer
: 行的整数位置或切片。column_indexer
: 列的整数位置或切片。下面是一些使用 iloc
的示例:
import pandas as pd
# 创建一个示例 DataFrame
data = {'Name': ['Alice', 'Bob', 'Charlie', 'David'],
'Age': [25, 30, 35, 40],
'City': ['New York', 'San Francisco', 'Los Angeles', 'Chicago']}
df = pd.DataFrame(data)
# 使用 iloc 获取特定行和列的数据
# 获取第二行(索引为1)的所有列数据
row_1 = df.iloc[1, :]
# 获取第一列(索引为0)的所有行数据
column_0 = df.iloc[:, 0]
# 获取第二行到第四行(索引为1到3)的第一列和第二列的数据
subset = df.iloc[1:4, 0:2]
print("Row 1:")
print(row_1)
print("\nColumn 0:")
print(column_0)
print("\nSubset:")
print(subset)
在这个例子中,iloc
被用于获取指定的行和列。要注意,iloc
使用的是整数位置,而不是标签。索引从0开始。这使得 iloc
适用于对 DataFrame 进行基于位置的切片和索引。
Row 1:
Name Bob
Age 30
City San Francisco
Name: 1, dtype: object
Column 0:
0 Alice
1 Bob
2 Charlie
3 David
Name: Name, dtype: object
Subset:
Name Age
1 Bob 30
2 Charlie 35
3 David 40