pandas的iloc函数

发布时间:2024年01月13日
pandas的iloc函数:

iloc 是 Pandas 中用于基于整数位置进行索引和切片的方法。它允许你通过整数位置来访问 DataFrame 中的特定行和列。

语法格式如下:

DataFrame.iloc[row_indexer, column_indexer]
  • row_indexer: 行的整数位置或切片。
  • column_indexer: 列的整数位置或切片。

下面是一些使用 iloc 的示例:

import pandas as pd

# 创建一个示例 DataFrame
data = {'Name': ['Alice', 'Bob', 'Charlie', 'David'],
        'Age': [25, 30, 35, 40],
        'City': ['New York', 'San Francisco', 'Los Angeles', 'Chicago']}

df = pd.DataFrame(data)

# 使用 iloc 获取特定行和列的数据
# 获取第二行(索引为1)的所有列数据
row_1 = df.iloc[1, :]

# 获取第一列(索引为0)的所有行数据
column_0 = df.iloc[:, 0]

# 获取第二行到第四行(索引为1到3)的第一列和第二列的数据
subset = df.iloc[1:4, 0:2]

print("Row 1:")
print(row_1)
print("\nColumn 0:")
print(column_0)
print("\nSubset:")
print(subset)

在这个例子中,iloc 被用于获取指定的行和列。要注意,iloc 使用的是整数位置,而不是标签。索引从0开始。这使得 iloc 适用于对 DataFrame 进行基于位置的切片和索引。

Row 1:
Name              Bob
Age                30
City    San Francisco
Name: 1, dtype: object

Column 0:
0      Alice
1        Bob
2    Charlie
3      David
Name: Name, dtype: object

Subset:
      Name  Age
1      Bob   30
2  Charlie   35
3    David   40
文章来源:https://blog.csdn.net/weixin_47552564/article/details/135567755
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。