目录
给定一个整型数组, 你的任务是找到所有该数组的递增子序列,递增子序列的长度至少是2。
示例:
说明:
本题求子序列,很明显一个元素不能重复使用,所以需要startIndex,调整下一层递归的起始位置。
代码如下:
vector<vector<int>> result;
vector<int> path;
void backtracking(vector<int>& nums, int startIndex)
本题其实类似求子集问题,也是要遍历树形结构找每一个节点,
可以不加终止条件,startIndex每次都会加1,并不会无限递归。
但本题收集结果有所不同,题目要求递增子序列大小至少为2,所以代码如下:
if (path.size() > 1) {
result.push_back(path);
// 注意这里不要加return,因为要取树上的所有节点
}
在图中可以看出,同一父节点下的同层上使用过的元素就不能再使用了
那么单层搜索代码如下:
unordered_set<int> uset; // 使用set来对本层元素进行去重
for (int i = startIndex; i < nums.size(); i++) {
if ((!path.empty() && nums[i] < path.back())
|| uset.find(nums[i]) != uset.end()) {
continue;
}
uset.insert(nums[i]); // 记录这个元素在本层用过了,本层后面不能再用了
path.push_back(nums[i]);
backtracking(nums, i + 1);
path.pop_back();
}
对于已经习惯写回溯的同学,看到递归函数上面的uset.insert(nums[i]);
,下面却没有对应的pop之类的操作,应该很不习惯吧
这也是需要注意的点,unordered_set<int> uset;
是记录本层元素是否重复使用,新的一层uset都会重新定义(清空),所以要知道uset只负责本层!
class Solution {
List<List<Integer>> result = new ArrayList<>();
List<Integer> path = new ArrayList<>();
public List<List<Integer>> findSubsequences(int[] nums) {
backTracking(nums, 0);
return result;
}
private void backTracking(int[] nums, int startIndex){
if(path.size() >= 2)
result.add(new ArrayList<>(path));
HashSet<Integer> hs = new HashSet<>();
for(int i = startIndex; i < nums.length; i++){
if(!path.isEmpty() && path.get(path.size() -1 ) > nums[i] || hs.contains(nums[i]))
continue;
hs.add(nums[i]);
path.add(nums[i]);
backTracking(nums, i + 1);
path.remove(path.size() - 1);
}
}
}
class Solution {
private List<Integer> path = new ArrayList<>();
private List<List<Integer>> res = new ArrayList<>();
public List<List<Integer>> findSubsequences(int[] nums) {
backtracking(nums,0);
return res;
}
private void backtracking (int[] nums, int start) {
if (path.size() > 1) {
res.add(new ArrayList<>(path));
}
int[] used = new int[201];
for (int i = start; i < nums.length; i++) {
if (!path.isEmpty() && nums[i] < path.get(path.size() - 1) ||
(used[nums[i] + 100] == 1)) continue;
used[nums[i] + 100] = 1;
path.add(nums[i]);
backtracking(nums, i + 1);
path.remove(path.size() - 1);
}
}
}
//法二:使用map
class Solution {
//结果集合
List<List<Integer>> res = new ArrayList<>();
//路径集合
LinkedList<Integer> path = new LinkedList<>();
public List<List<Integer>> findSubsequences(int[] nums) {
getSubsequences(nums,0);
return res;
}
private void getSubsequences( int[] nums, int start ) {
if(path.size()>1 ){
res.add( new ArrayList<>(path) );
// 注意这里不要加return,要取树上的节点
}
HashMap<Integer,Integer> map = new HashMap<>();
for(int i=start ;i < nums.length ;i++){
if(!path.isEmpty() && nums[i]< path.getLast()){
continue;
}
// 使用过了当前数字
if ( map.getOrDefault( nums[i],0 ) >=1 ){
continue;
}
map.put(nums[i],map.getOrDefault( nums[i],0 )+1);
path.add( nums[i] );
getSubsequences( nums,i+1 );
path.removeLast();
}
}
}
给定一个 没有重复 数字的序列,返回其所有可能的全排列。
示例:
首先排列是有序的,也就是说 [1,2] 和 [2,1] 是两个集合,这和之前分析的子集以及组合所不同的地方。
可以看出元素1在[1,2]中已经使用过了,但是在[2,1]中还要在使用一次1,所以处理排列问题就不用使用startIndex了。
但排列问题需要一个used数组,标记已经选择的元素,如图橘黄色部分所示:
代码如下:
vector<vector<int>> result;
vector<int> path;
void backtracking (vector<int>& nums, vector<bool>& used)
可以看出叶子节点,就是收割结果的地方。
当收集元素的数组path的大小达到和nums数组一样大的时候,说明找到了一个全排列,也表示到达了叶子节点。
代码如下:
// 此时说明找到了一组
if (path.size() == nums.size()) {
result.push_back(path);
return;
}
因为排列问题,每次都要从头开始搜索,例如元素1在[1,2]中已经使用过了,但是在[2,1]中还要再使用一次1。
而used数组,其实就是记录此时path里都有哪些元素使用了,一个排列里一个元素只能使用一次。
代码如下:
for (int i = 0; i < nums.size(); i++) {
if (used[i] == true) continue; // path里已经收录的元素,直接跳过
used[i] = true;
path.push_back(nums[i]);
backtracking(nums, used);
path.pop_back();
used[i] = false;
}
class Solution {
List<List<Integer>> result = new ArrayList<>();// 存放符合条件结果的集合
LinkedList<Integer> path = new LinkedList<>();// 用来存放符合条件结果
boolean[] used;
public List<List<Integer>> permute(int[] nums) {
if (nums.length == 0){
return result;
}
used = new boolean[nums.length];
permuteHelper(nums);
return result;
}
private void permuteHelper(int[] nums){
if (path.size() == nums.length){
result.add(new ArrayList<>(path));
return;
}
for (int i = 0; i < nums.length; i++){
if (used[i]){
continue;
}
used[i] = true;
path.add(nums[i]);
permuteHelper(nums);
path.removeLast();
used[i] = false;
}
}
}
// 解法2:通过判断path中是否存在数字,排除已经选择的数字
class Solution {
List<List<Integer>> result = new ArrayList<>();
LinkedList<Integer> path = new LinkedList<>();
public List<List<Integer>> permute(int[] nums) {
if (nums.length == 0) return result;
backtrack(nums, path);
return result;
}
public void backtrack(int[] nums, LinkedList<Integer> path) {
if (path.size() == nums.length) {
result.add(new ArrayList<>(path));
}
for (int i =0; i < nums.length; i++) {
// 如果path中已有,则跳过
if (path.contains(nums[i])) {
continue;
}
path.add(nums[i]);
backtrack(nums, path);
path.removeLast();
}
}
}
给定一个可包含重复数字的序列 nums ,按任意顺序 返回所有不重复的全排列。
示例 1:
示例 2:
提示:
去重一定要对元素进行排序,这样我们才方便通过相邻的节点来判断是否重复使用了。
图中我们对同一树层,前一位(也就是nums[i-1])如果使用过,那么就进行去重。
一般来说:组合问题和排列问题是在树形结构的叶子节点上收集结果,而子集问题就是取树上所有节点的结果。
class Solution {
//存放结果
List<List<Integer>> result = new ArrayList<>();
//暂存结果
List<Integer> path = new ArrayList<>();
public List<List<Integer>> permuteUnique(int[] nums) {
boolean[] used = new boolean[nums.length];
Arrays.fill(used, false);
Arrays.sort(nums);
backTrack(nums, used);
return result;
}
private void backTrack(int[] nums, boolean[] used) {
if (path.size() == nums.length) {
result.add(new ArrayList<>(path));
return;
}
for (int i = 0; i < nums.length; i++) {
// used[i - 1] == true,说明同?树?nums[i - 1]使?过
// used[i - 1] == false,说明同?树层nums[i - 1]使?过
// 如果同?树层nums[i - 1]使?过则直接跳过
if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {
continue;
}
//如果同?树?nums[i]没使?过开始处理
if (used[i] == false) {
used[i] = true;//标记同?树?nums[i]使?过,防止同一树枝重复使用
path.add(nums[i]);
backTrack(nums, used);
path.remove(path.size() - 1);//回溯,说明同?树层nums[i]使?过,防止下一树层重复
used[i] = false;//回溯
}
}
}
}