全量表数据由DataX从MySQL业务数据库直接同步到HDFS,具体数据流向如下图所示。
我们需要编写DataX 的json 配置文件,以activity_info为例,配置内容如下:
{
"job": {
"content": [
{
"reader": {
"name": "mysqlreader",
"parameter": {
"column": [
"id",
"activity_name",
"activity_type",
"activity_desc",
"start_time",
"end_time",
"create_time"
],
"connection": [
{
"jdbcUrl": [
"jdbc:mysql://hadoop102:3306/gmall"
],
"table": [
"activity_info"
]
}
],
"password": "<your mysql password>",
"splitPk": "",
"username": "<your mysql account>"
}
},
"writer": {
"name": "hdfswriter",
"parameter": {
"column": [
{
"name": "id",
"type": "bigint"
},
{
"name": "activity_name",
"type": "string"
},
{
"name": "activity_type",
"type": "string"
},
{
"name": "activity_desc",
"type": "string"
},
{
"name": "start_time",
"type": "string"
},
{
"name": "end_time",
"type": "string"
},
{
"name": "create_time",
"type": "string"
}
],
"compress": "gzip",
"defaultFS": "hdfs://hadoop102:8020",
"fieldDelimiter": "\t",
"fileName": "activity_info",
"fileType": "text",
"path": "${targetdir}",
"writeMode": "append"
}
}
}
],
"setting": {
"speed": {
"channel": 1
}
}
}
}
注:由于目标路径包含一层日期,用于对不同天的数据加以区分,故path参数并未写死,需在提交任务时通过参数动态传入,参数名称为targetdir。
# ecoding=utf-8
import json
import getopt
import os
import sys
import MySQLdb
#MySQL相关配置,需根据实际情况作出修改
mysql_host = "hadoop102"
mysql_port = "3306"
mysql_user = "root"
mysql_passwd = "000000"
#HDFS NameNode相关配置,需根据实际情况作出修改
hdfs_nn_host = "hadoop102"
hdfs_nn_port = "8020"
#生成配置文件的目标路径,可根据实际情况作出修改
output_path = "/opt/module/datax/job/import"
def get_connection():
return MySQLdb.connect(host=mysql_host, port=int(mysql_port), user=mysql_user, passwd=mysql_passwd)
def get_mysql_meta(database, table):
connection = get_connection()
cursor = connection.cursor()
sql = "SELECT COLUMN_NAME,DATA_TYPE from information_schema.COLUMNS WHERE TABLE_SCHEMA=%s AND TABLE_NAME=%s ORDER BY ORDINAL_POSITION"
cursor.execute(sql, [database, table])
fetchall = cursor.fetchall()
cursor.close()
connection.close()
return fetchall
def get_mysql_columns(database, table):
return map(lambda x: x[0], get_mysql_meta(database, table))
def get_hive_columns(database, table):
def type_mapping(mysql_type):
mappings = {
"bigint": "bigint",
"int": "bigint",
"smallint": "bigint",
"tinyint": "bigint",
"decimal": "string",
"double": "double",
"float": "float",
"binary": "string",
"char": "string",
"varchar": "string",
"datetime": "string",
"time": "string",
"timestamp": "string",
"date": "string",
"text": "string"
}
return mappings[mysql_type]
meta = get_mysql_meta(database, table)
return map(lambda x: {"name": x[0], "type": type_mapping(x[1].lower())}, meta)
def generate_json(source_database, source_table):
job = {
"job": {
"setting": {
"speed": {
"channel": 3
},
"errorLimit": {
"record": 0,
"percentage": 0.02
}
},
"content": [{
"reader": {
"name": "mysqlreader",
"parameter": {
"username": mysql_user,
"password": mysql_passwd,
"column": get_mysql_columns(source_database, source_table),
"splitPk": "",
"connection": [{
"table": [source_table],
"jdbcUrl": ["jdbc:mysql://" + mysql_host + ":" + mysql_port + "/" + source_database]
}]
}
},
"writer": {
"name": "hdfswriter",
"parameter": {
"defaultFS": "hdfs://" + hdfs_nn_host + ":" + hdfs_nn_port,
"fileType": "text",
"path": "${targetdir}",
"fileName": source_table,
"column": get_hive_columns(source_database, source_table),
"writeMode": "append",
"fieldDelimiter": "\t",
"compress": "gzip"
}
}
}]
}
}
if not os.path.exists(output_path):
os.makedirs(output_path)
with open(os.path.join(output_path, ".".join([source_database, source_table, "json"])), "w") as f:
json.dump(job, f)
def main(args):
source_database = ""
source_table = ""
options, arguments = getopt.getopt(args, '-d:-t:', ['sourcedb=', 'sourcetbl='])
for opt_name, opt_value in options:
if opt_name in ('-d', '--sourcedb'):
source_database = opt_value
if opt_name in ('-t', '--sourcetbl'):
source_table = opt_value
generate_json(source_database, source_table)
if __name__ == '__main__':
main(sys.argv[1:])
补充说明:
sudo yum install -y MySQL-python
python gen_import_config.py -d database -t table
通过-d传入数据库名,-t传入表名,执行上述命令即可生成该表的DataX同步配置文件。#!/bin/bash
python ~/bin/gen_import_config.py -d gmall -t activity_info
python ~/bin/gen_import_config.py -d gmall -t activity_rule
python ~/bin/gen_import_config.py -d gmall -t base_category1
python ~/bin/gen_import_config.py -d gmall -t base_category2
python ~/bin/gen_import_config.py -d gmall -t base_category3
python ~/bin/gen_import_config.py -d gmall -t base_dic
python ~/bin/gen_import_config.py -d gmall -t base_province
python ~/bin/gen_import_config.py -d gmall -t base_region
python ~/bin/gen_import_config.py -d gmall -t base_trademark
python ~/bin/gen_import_config.py -d gmall -t cart_info
python ~/bin/gen_import_config.py -d gmall -t coupon_info
python ~/bin/gen_import_config.py -d gmall -t sku_attr_value
python ~/bin/gen_import_config.py -d gmall -t sku_info
python ~/bin/gen_import_config.py -d gmall -t sku_sale_attr_value
python ~/bin/gen_import_config.py -d gmall -t spu_info
chmod +x gen_import_config.sh
[logan@hadoop101 bin]$ gen_import_config.sh
ll /opt/module/datax/job/import/
,总共15 个以activity_info为例,测试用脚本生成的配置文件是否可用。
python /opt/module/datax/bin/datax.py -p"-Dtargetdir=/origin_data/gmall/db/activity_info_full/2023-06-14" /opt/module/datax/job/import/gmall.activity_info.json
为方便使用以及后续的任务调度,此处编写一个全量表数据同步脚本。
#!/bin/bash
DATAX_HOME=/opt/module/datax
# 如果传入日期则do_date等于传入的日期,否则等于前一天日期
if [ -n "$2" ] ;then
do_date=$2
else
do_date=`date -d "-1 day" +%F`
fi
#处理目标路径,此处的处理逻辑是,如果目标路径不存在,则创建;若存在,则清空,目的是保证同步任务可重复执行
handle_targetdir() {
hadoop fs -test -e $1
if [[ $? -eq 1 ]]; then
echo "路径$1不存在,正在创建......"
hadoop fs -mkdir -p $1
else
echo "路径$1已经存在"
fs_count=$(hadoop fs -count $1)
content_size=$(echo $fs_count | awk '{print $3}')
if [[ $content_size -eq 0 ]]; then
echo "路径$1为空"
else
echo "路径$1不为空,正在清空......"
hadoop fs -rm -r -f $1/*
fi
fi
}
#数据同步
import_data() {
datax_config=$1
target_dir=$2
handle_targetdir $target_dir
python $DATAX_HOME/bin/datax.py -p"-Dtargetdir=$target_dir" $datax_config
}
case $1 in
"activity_info")
import_data /opt/module/datax/job/import/gmall.activity_info.json /origin_data/gmall/db/activity_info_full/$do_date
;;
"activity_rule")
import_data /opt/module/datax/job/import/gmall.activity_rule.json /origin_data/gmall/db/activity_rule_full/$do_date
;;
"base_category1")
import_data /opt/module/datax/job/import/gmall.base_category1.json /origin_data/gmall/db/base_category1_full/$do_date
;;
"base_category2")
import_data /opt/module/datax/job/import/gmall.base_category2.json /origin_data/gmall/db/base_category2_full/$do_date
;;
"base_category3")
import_data /opt/module/datax/job/import/gmall.base_category3.json /origin_data/gmall/db/base_category3_full/$do_date
;;
"base_dic")
import_data /opt/module/datax/job/import/gmall.base_dic.json /origin_data/gmall/db/base_dic_full/$do_date
;;
"base_province")
import_data /opt/module/datax/job/import/gmall.base_province.json /origin_data/gmall/db/base_province_full/$do_date
;;
"base_region")
import_data /opt/module/datax/job/import/gmall.base_region.json /origin_data/gmall/db/base_region_full/$do_date
;;
"base_trademark")
import_data /opt/module/datax/job/import/gmall.base_trademark.json /origin_data/gmall/db/base_trademark_full/$do_date
;;
"cart_info")
import_data /opt/module/datax/job/import/gmall.cart_info.json /origin_data/gmall/db/cart_info_full/$do_date
;;
"coupon_info")
import_data /opt/module/datax/job/import/gmall.coupon_info.json /origin_data/gmall/db/coupon_info_full/$do_date
;;
"sku_attr_value")
import_data /opt/module/datax/job/import/gmall.sku_attr_value.json /origin_data/gmall/db/sku_attr_value_full/$do_date
;;
"sku_info")
import_data /opt/module/datax/job/import/gmall.sku_info.json /origin_data/gmall/db/sku_info_full/$do_date
;;
"sku_sale_attr_value")
import_data /opt/module/datax/job/import/gmall.sku_sale_attr_value.json /origin_data/gmall/db/sku_sale_attr_value_full/$do_date
;;
"spu_info")
import_data /opt/module/datax/job/import/gmall.spu_info.json /origin_data/gmall/db/spu_info_full/$do_date
;;
"all")
import_data /opt/module/datax/job/import/gmall.activity_info.json /origin_data/gmall/db/activity_info_full/$do_date
import_data /opt/module/datax/job/import/gmall.activity_rule.json /origin_data/gmall/db/activity_rule_full/$do_date
import_data /opt/module/datax/job/import/gmall.base_category1.json /origin_data/gmall/db/base_category1_full/$do_date
import_data /opt/module/datax/job/import/gmall.base_category2.json /origin_data/gmall/db/base_category2_full/$do_date
import_data /opt/module/datax/job/import/gmall.base_category3.json /origin_data/gmall/db/base_category3_full/$do_date
import_data /opt/module/datax/job/import/gmall.base_dic.json /origin_data/gmall/db/base_dic_full/$do_date
import_data /opt/module/datax/job/import/gmall.base_province.json /origin_data/gmall/db/base_province_full/$do_date
import_data /opt/module/datax/job/import/gmall.base_region.json /origin_data/gmall/db/base_region_full/$do_date
import_data /opt/module/datax/job/import/gmall.base_trademark.json /origin_data/gmall/db/base_trademark_full/$do_date
import_data /opt/module/datax/job/import/gmall.cart_info.json /origin_data/gmall/db/cart_info_full/$do_date
import_data /opt/module/datax/job/import/gmall.coupon_info.json /origin_data/gmall/db/coupon_info_full/$do_date
import_data /opt/module/datax/job/import/gmall.sku_attr_value.json /origin_data/gmall/db/sku_attr_value_full/$do_date
import_data /opt/module/datax/job/import/gmall.sku_info.json /origin_data/gmall/db/sku_info_full/$do_date
import_data /opt/module/datax/job/import/gmall.sku_sale_attr_value.json /origin_data/gmall/db/sku_sale_attr_value_full/$do_date
import_data /opt/module/datax/job/import/gmall.spu_info.json /origin_data/gmall/db/spu_info_full/$do_date
;;
esac
chmod +x ~/bin/mysql_to_hdfs_full.sh
mysql_to_hdfs_full.sh all 2023-06-14