CAP原则又称CAP定理,指的是在一个分布式系统中,Consistency(一致性)、 Availability(可用性)、Partition tolerance(分区容错性)这三个基本需求,最多只能同时满足其中的2个。
一致性 :数据在多个副本之间能够保持一致的特性。
可用性:系统提供的服务一直处于可用的状态,每次请求都能获得正确的响应。
分区容错性:分布式系统在遇到任何网络分区故障的时候,仍然能够对外提供满足一致性和可用性的服务。
什么是分区?
在分布式系统中,不同的节点分布在不同的子网络中,由于一些特殊的原因,这些子节点之间出现了网络不通的状态,但他们的内部子网络是正常的。从而导致了整个系统的环境被切分成了若干个孤立的区域,这就是分区。
首先,我们得知道,分布式系统,是避免不了分区的,分区容错性是一定要满足的,我们看看在满足分区容错的基础上,能不能同时满足一致性和可用性?
假如现在有两个分区N1和N2,N1和N2分别有不同的分区存储D1和D2,以及不同的服务S1和S2。
好的,现在有这样的场景:
用户访问了N1,修改了D1的数据。
用户再次访问,请求落在了N2。此时D1和D2的数据不一致。
接下来:
保证一致性:此时D1和D2数据不一致,要保证一致性就不能返回不一致的数据,可用性无法保证。
保证可用性:立即响应,可用性得到了保证,但是此时响应的数据和D1不一致,一致性无法保证。
所以,可以看出,分区容错的前提下,一致性和可用性是矛盾的。
CAP三者不可同得,那么必须得做一些权衡。
如果不要求P(不允许分区),则C(强一致性)和A(可用性)是可以保证的。但是对于分布式系统,分区是客观存在的,其实分布式系统理论上是不可选CA的。
如果不要求A(可用),相当于每个请求都需要在Server之间强一致,而P(分区)会导致同步时间无限延长,如此CP也是可以保证的。很多传统的数据库分布式事务都属于这种模式。
要高可用并允许分区,则需放弃一致性。一旦分区发生,节点之间可能会失去联系,为了高可用,每个节点只能用本地数据提供服务,而这样会导致全局数据的不一致性。现在众多的NoSQL都属于此类。
我们应该都接触过微服务,常见的可以作为注册中心的组件有:ZooKeeper、Eureka、Nacos…。