YOLOv8优化策略:轻量化改进 | 华为Ghostnetv2,端侧小模型性能新SOTA | NeurIPS22 Spotlight

发布时间:2024年01月10日

 ??????本文改进:GhostNetV2 是 GhostNet 的增强版本,GhostBottleneckV2与YOLOV8建立轻量C2f_GhostBottleneckV2

 ??????YOLOv8改进专栏:http://t.csdnimg.cn/hGhVK

学姐带你学习YOLOv8,从入门到创新,轻轻松松搞定科研;

 1.Ghostnetv2介绍

 论文:https://arxiv.org/pdf/2211.12905.pdf

         尽管 Ghost 模块可以大幅度地减少计算代价,但是其特征的表征能力也因为 "卷积操作只能建模一个窗口内的局部信息" 而被削弱了。在 GhostNet 中,一半的特征的空间信息被廉价操作 (3×3 Depth-wise Convolution) 所捕获,其余的特征只是由 1×1 的 Point-

文章来源:https://blog.csdn.net/CV_20231007/article/details/135497008
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。