【OpenCV学习笔记19】- 图像梯度

发布时间:2024年01月22日

这是对于 OpenCV 官方文档中 图像处理 的学习笔记。学习笔记中会记录官方给出的例子,也会给出自己根据官方的例子完成的更改代码,同样彩蛋的实现也会结合多个知识点一起实现一些小功能,来帮助我们对学会的知识点进行结合应用。
如果有喜欢我笔记的请麻烦帮我关注、点赞、评论。谢谢诸位。

学习笔记:
学习笔记目录里面会收录我关于OpenCV系列学习笔记博文,大家如果有什么不懂的可以通过阅读我的学习笔记进行学习。
【OpenCV学习笔记】- 学习笔记目录

内容

  • 你会学到如何找到图像的梯度,边缘等。
  • 你会学到如下函数:cv.Sobel(),cv.Scharr(),cv.Laplacian() 等。

理论

OpenCv 提供三种类型的梯度滤波器或高通滤波器,Sobel、Scharr 和 Laplacian。我们会逐步介绍。

1、Sobel 和 Scharr 微分

Sobel 算子是一种联合高斯平滑加微分运算,因此对噪声的抵抗能力更强。可以指定要计算的导数的方向,垂直或水平(分别由参数、Yorder 和 Xorder 指定)。还可以通过参数 ksize 指定内核的大小。如果 ksize=-1,则使用 3x3 Scharr 滤波器,这比 3x3 Sobel 滤波器效果更好。请参阅所用内核的文档。

2、Laplacian 微分

它计算由关系式 (在这里插入图片描述) 给出的图像的拉普拉斯式,其中使用 Sobel 微分计算每个导数。如果 ksize=1,则使用以下内核进行筛选:
在这里插入图片描述

代码实现

下面的代码显示了一个完整的梯度计算流程中的所有操作。所有的内核都是 5x5 大小。输出图像的深度在参数传入-1时得到 np.uint8 类型的结果。

示例代码:

# 图像梯度
# 理论
# 2、Laplacian 微分
import cv2
from matplotlib import pyplot as plt

img = cv2.imread('../image/3.6.1.png', 0)
laplacian = cv2.Laplacian(img, cv2.CV_64F)
sobelx = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=5)
sobely = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=5)
plt.subplot(2, 2, 1), plt.imshow(img, cmap='gray')
plt.title('Original'), plt.xticks([]), plt.yticks([])
plt.subplot(2, 2, 2), plt.imshow(laplacian, cmap='gray')
plt.title('Laplacian'), plt.xticks([]), plt.yticks([])
plt.subplot(2, 2, 3), plt.imshow(sobelx, cmap='gray')
plt.title('Sobel X'), plt.xticks([]), plt.yticks([])
plt.subplot(2, 2, 4), plt.imshow(sobely, cmap='gray')
plt.title('Sobel Y'), plt.xticks([]), plt.yticks([])
plt.show()

效果图:
在这里插入图片描述

重点注意

在上一个示例中,输出数据类型是 cv.CV_8U或 np.uint8。但这有一个小问题。黑白过渡为正斜率(有正值),而白黑过渡为负斜率(有负值)。所以当你把数据转换成 np.uint8 时,所有的负斜率都变成零。简单来说,你失去了边缘。

如果要检测两条边,更好的选择是将输出数据类型保留为更高的格式,如 cv.CV_16S、cv.CV_64F 等,取其绝对值,然后转换回 cv.CV_8U。下面的代码演示了水平 Sobel滤波器的过程以及结果差异。

示例代码:

# # 图像梯度
# # 重点注意
import numpy as np
import cv2
from matplotlib import pyplot as plt

img = cv2.imread('../image/3.6.2.png', 0)
# Output dtype = cv2.CV_8U
sobelx8u = cv2.Sobel(img, cv2.CV_8U, 1, 0, ksize=5)
# Output dtype = cv2.CV_64F. Then take its absolute and convert to cv2.CV_8U
sobelx64f = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=5)
abs_sobel64f = np.absolute(sobelx64f)
sobel_8u = np.uint8(abs_sobel64f)
plt.subplot(1, 3, 1), plt.imshow(img, cmap='gray')
plt.title('Original'), plt.xticks([]), plt.yticks([])
plt.subplot(1, 3, 2), plt.imshow(sobelx8u, cmap='gray')
plt.title('Sobel CV_8U'), plt.xticks([]), plt.yticks([])
plt.subplot(1, 3, 3), plt.imshow(sobel_8u, cmap='gray')
plt.title('Sobel abs(CV_64F)'), plt.xticks([]), plt.yticks([])
plt.show()

效果图:

在这里插入图片描述

文章来源:https://blog.csdn.net/q664243624/article/details/135753173
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。