相关文章:
- PyQt5和Qt designer的详细安装教程:https://blog.csdn.net/qq_43811536/article/details/135185233?spm=1001.2014.3001.5501
- Qt designer界面和所有组件功能的详细介绍:https://blog.csdn.net/qq_43811536/article/details/135186862?spm=1001.2014.3001.5501
- Qt designer设计UI实例:双视图立体匹配与重建的可视化UI:https://blog.csdn.net/qq_43811536/article/details/135198820?spm=1001.2014.3001.5501
- 基于PyQt5自定义UI的详细教程:https://blog.csdn.net/qq_43811536/article/details/135284469?spm=1001.2014.3001.5501
本项目旨在通过双视图立体匹配技术实现三维场景重建。输入为一对左右眼视图的图像,输出为三维重建的深度图可视化结果。本报告通过实现 WTA(Winner-Take-All)和 SGM(Semi-Global Matching)匹配算法,结合 SAD(Sum of Absolute Differences)、SSD(Sum of Squared Differences)和 NCC(Normalized Cross-Correlation)三种成本函数,提供了一个用于立体图像匹配和深度图重建的较为完整的解决方案。
匹配算法:
成本计算:
基于上一小节具体的算法实现,本报告使用Qt Designer 设计了一个可供用户交互的界面,详情参考Qt designer设计UI实例:双视图立体匹配与重建的可视化UI。界面包含图片选择(Picture)、匹配算法选择(Matching algorithm)、成本函数选择(Matching cost)、运行按钮(Run)、图片显示窗口(Picture visualization)、结果显示窗口(Results display)和输出信息窗口(Output information)。然后使用 PyQt5 实现界面的初始化和槽函数自定义,详情参考基于PyQt5自定义UI的详细教程。
以图片“Adirondack”为例,下图展示了该图片在使用SGM和NCC算法时的重建结果以及运行过程中的用户界面。其中运行时长为21.565s,重建精度为0.929。
我们以双视图“Adirondack”和“cones”为例,分别对两种匹配算法和三种成本算法进行重建性能和用时对比。“bowling”的重建结果见附录图。
下面两幅图分别呈现两个双视图在不同匹配和成本算法下的深度图结果,两个表格分别罗列重建性能和用时的量化结果。
源代码可以从GitHub链接获取:https://github.com/Jurio0304/Two-view_Stereo_Matching_and_Reconstruction
创作不易,参考的话球球给个star…
Scharstein D, Hirschmüller H, Kitajima Y, et al. High-Resolution Stereo Datasets with Subpixel-Accurate Ground Truth. In: Pattern Recognition. Ed. by Jiang X, Hornegger
J, and Koch R. Cham: Springer International Publishing, 2014:31–42. ??