老师想给孩子们分发糖果,有 N 个孩子站成了一条直线,老师会根据每个孩子的表现,预先给他们评分。
你需要按照以下要求,帮助老师给这些孩子分发糖果:
那么这样下来,老师至少需要准备多少颗糖果呢?
示例 1:
示例 2:
这道题目一定是要确定一边之后,再确定另一边,例如比较每一个孩子的左边,然后再比较右边,如果两边一起考虑一定会顾此失彼。
先确定右边评分大于左边的情况(也就是从前向后遍历)
此时局部最优:只要右边评分比左边大,右边的孩子就多一个糖果,全局最优:相邻的孩子中,评分高的右孩子获得比左边孩子更多的糖果
局部最优可以推出全局最优。
如果ratings[i] > ratings[i - 1] 那么[i]的糖 一定要比[i - 1]的糖多一个,所以贪心:candyVec[i] = candyVec[i - 1] + 1
代码如下:
// 从前向后
for (int i = 1; i < ratings.size(); i++) {
if (ratings[i] > ratings[i - 1]) candyVec[i] = candyVec[i - 1] + 1;
}
如图:
再确定左孩子大于右孩子的情况(从后向前遍历)
遍历顺序这里有同学可能会有疑问,为什么不能从前向后遍历呢?
因为 rating[5]与rating[4]的比较 要利用上 rating[5]与rating[6]的比较结果,所以 要从后向前遍历。
如果从前向后遍历,rating[5]与rating[4]的比较 就不能用上 rating[5]与rating[6]的比较结果了 。如图:
所以确定左孩子大于右孩子的情况一定要从后向前遍历!
如果 ratings[i] > ratings[i + 1],此时candyVec[i](第i个小孩的糖果数量)就有两个选择了,一个是candyVec[i + 1] + 1(从右边这个加1得到的糖果数量),一个是candyVec[i](之前比较右孩子大于左孩子得到的糖果数量)。
那么又要贪心了,局部最优:取candyVec[i + 1] + 1 和 candyVec[i] 最大的糖果数量,保证第i个小孩的糖果数量既大于左边的也大于右边的。全局最优:相邻的孩子中,评分高的孩子获得更多的糖果。
局部最优可以推出全局最优。
所以就取candyVec[i + 1] + 1 和 candyVec[i] 最大的糖果数量,candyVec[i]只有取最大的才能既保持对左边candyVec[i - 1]的糖果多,也比右边candyVec[i + 1]的糖果多。
class Solution {
/**
分两个阶段
1、起点下标1 从左往右,只要 右边 比 左边 大,右边的糖果=左边 + 1
2、起点下标 ratings.length - 2 从右往左, 只要左边 比 右边 大,此时 左边的糖果应该 取本身的糖果数(符合比它左边大) 和 右边糖果数 + 1 二者的最大值,这样才符合 它比它左边的大,也比它右边大
*/
public int candy(int[] ratings) {
int len = ratings.length;
int[] candyVec = new int[len];
candyVec[0] = 1;
for (int i = 1; i < len; i++) {
candyVec[i] = (ratings[i] > ratings[i - 1]) ? candyVec[i - 1] + 1 : 1;
}
for (int i = len - 2; i >= 0; i--) {
if (ratings[i] > ratings[i + 1]) {
candyVec[i] = Math.max(candyVec[i], candyVec[i + 1] + 1);
}
}
int ans = 0;
for (int num : candyVec) {
ans += num;
}
return ans;
}
}