Atomic 翻译成中文是原子的意思。在化学上,我们知道原子是构成一般物质的最小单位,在化学反应中是不可分割的。在我们这里 Atomic 是指一个操作是不可中断的。即使是在多个线程一起执行的时候,一个操作一旦开始,就不会被其他线程干扰。
所以,所谓原子类说简单点就是具有原子/原子操作特征的类。
并发包 java.util.concurrent
的原子类都存放在java.util.concurrent.atomic
下,如下图所示。
AtomicInteger
:整型原子类AtomicBoolean
:布尔型原子类AtomicLong
:长整型原子类public final int get() //获取当前的值
public final int getAndSet(int newValue)//获取当前的值,并设置新的值
public final int getAndIncrement()//获取当前的值,并自增
public final int getAndDecrement() //获取当前的值,并自减
public final int getAndAdd(int delta) //获取当前的值,并加上预期的值
boolean compareAndSet(int expect, int update) //如果输入的数值等于预期值,则以原子方式将该值设置为输入值(update)
public final void lazySet(int newValue)//最终设置为newValue,使用 lazySet 设置之后可能导致其他线程在之后的一小段时间内还是可以读到旧的值。
AtomicInteger 类使用示例 :
import java.util.concurrent.atomic.AtomicInteger;
public class AtomicIntegerTest {
public static void main(String[] args) {
int temvalue = 0;
AtomicInteger i = new AtomicInteger(0);
temvalue = i.getAndSet(3);
System.out.println("temvalue:" + temvalue + "; i:" + i); //temvalue:0; i:3
temvalue = i.getAndIncrement();
System.out.println("temvalue:" + temvalue + "; i:" + i); //temvalue:3; i:4
temvalue = i.getAndAdd(5);
System.out.println("temvalue:" + temvalue + "; i:" + i); //temvalue:4; i:9
}
}
通过一个简单例子带大家看一下基本数据类型原子类的优势
1、多线程环境不使用原子类保证线程安全(基本数据类型)
class Test {
private volatile int count = 0;
//若要线程安全执行执行count++,需要加锁
public synchronized void increment() {
count++;
}
public int getCount() {
return count;
}
}
2、多线程环境使用原子类保证线程安全(基本数据类型)
class Test2 {
private AtomicInteger count = new AtomicInteger();
public void increment() {
count.incrementAndGet();
}
//使用AtomicInteger之后,不需要加锁,也可以实现线程安全。
public int getCount() {
return count.get();
}
}
AtomicInteger
类的部分源码:
// setup to use Unsafe.compareAndSwapInt for updates(更新操作时提供“比较并替换”的作用)
private static final Unsafe unsafe = Unsafe.getUnsafe();
private static final long valueOffset;
static {
try {
valueOffset = unsafe.objectFieldOffset
(AtomicInteger.class.getDeclaredField("value"));
} catch (Exception ex) { throw new Error(ex); }
}
private volatile int value;
AtomicInteger
类主要利用 CAS (compare and swap) + volatile 和 native 方法来保证原子操作,从而避免 synchronized 的高开销,执行效率大为提升。
CAS 的原理是拿期望的值和原本的一个值作比较,如果相同则更新成新的值。UnSafe 类的 objectFieldOffset()
方法是一个本地方法,这个方法是用来拿到“原来的值”的内存地址。另外 value 是一个 volatile 变量,在内存中可见,因此 JVM 可以保证任何时刻任何线程总能拿到该变量的最新值。
使用原子的方式更新数组里的某个元素
AtomicIntegerArray
:整形数组原子类AtomicLongArray
:长整形数组原子类AtomicReferenceArray
:引用类型数组原子类上面三个类提供的方法几乎相同,所以我们这里以 AtomicIntegerArray
为例子来介绍。
AtomicIntegerArray 类常用方法
public final int get(int i) //获取 index=i 位置元素的值
public final int getAndSet(int i, int newValue)//返回 index=i 位置的当前的值,并将其设置为新值:newValue
public final int getAndIncrement(int i)//获取 index=i 位置元素的值,并让该位置的元素自增
public final int getAndDecrement(int i) //获取 index=i 位置元素的值,并让该位置的元素自减
public final int getAndAdd(int i, int delta) //获取 index=i 位置元素的值,并加上预期的值
boolean compareAndSet(int i, int expect, int update) //如果输入的数值等于预期值,则以原子方式将 index=i 位置的元素值设置为输入值(update)
public final void lazySet(int i, int newValue)//最终 将index=i 位置的元素设置为newValue,使用 lazySet 设置之后可能导致其他线程在之后的一小段时间内还是可以读到旧的值。
基本类型原子类只能更新一个变量,如果需要原子更新多个变量,需要使用 引用类型原子类。
AtomicReference
:引用类型原子类AtomicStampedReference
:原子更新带有版本号的引用类型。该类将整数值与引用关联起来,可用于解决原子的更新数据和数据的版本号,可以解决使用 CAS 进行原子更新时可能出现的 ABA 问题。AtomicMarkableReference
:原子更新带有标记的引用类型。该类将 boolean 标记与引用关联起来public class AtomicMarkableReferenceDemo {
static AtomicMarkableReference markableReference = new AtomicMarkableReference(100, false);
public static void main(String[] args) {
new Thread(() -> {
boolean marked = markableReference.isMarked();
System.out.println(Thread.currentThread().getName() + "\t" + "默认标识: " + marked);//t1 默认标识: false
try {
TimeUnit.SECONDS.sleep(1);
} catch (InterruptedException e) {
e.printStackTrace();
}
markableReference.compareAndSet(100, 1000, marked, !marked);//t2 默认标识: false
}, "t1").start();
new Thread(() -> {
boolean marked = markableReference.isMarked();
System.out.println(Thread.currentThread().getName() + "\t" + "默认标识: " + marked);//t2 t2线程CASResult:false
try {
TimeUnit.SECONDS.sleep(2);
} catch (InterruptedException e) {
e.printStackTrace();
}
boolean b = markableReference.compareAndSet(100, 2000, marked, !marked);
System.out.println(Thread.currentThread().getName() + "\t" + "t2线程CASResult:" + b);
System.out.println(Thread.currentThread().getName() + "\t" + markableReference.isMarked());//t2 true
System.out.println(Thread.currentThread().getName() + "\t" + markableReference.getReference());//t2 1000
}, "t2").start();
}
}
如果需要原子更新某个类里的某个字段时,需要用到对象的属性修改类型原子类。
AtomicIntegerFieldUpdater
:原子更新整形字段的更新器AtomicLongFieldUpdater
:原子更新长整形字段的更新器AtomicReferenceFieldUpdater
:原子更新引用类型里的字段的更新器要想原子地更新对象的属性需要两步。第一步,因为对象的属性修改类型原子类都是抽象类,所以每次使用都必须使用静态方法 newUpdater()创建一个更新器,并且需要设置想要更新的类和属性。第二步,更新的对象属性必须使用 public volatile 修饰符。
上面三个类提供的方法几乎相同,所以我们这里以 AtomicIntegerFieldUpdater
为例子来介绍。
AtomicIntegerFieldUpdater 类使用示例 :
import java.util.concurrent.atomic.AtomicIntegerFieldUpdater;
public class AtomicIntegerFieldUpdaterTest {
public static void main(String[] args) {
AtomicIntegerFieldUpdater<User> a = AtomicIntegerFieldUpdater.newUpdater(User.class, "age");
User user = new User("Java", 22);
System.out.println(a.getAndIncrement(user));// 22
System.out.println(a.get(user));// 23
}
}
class User {
private String name;
public volatile int age;
public User(String name, int age) {
super();
this.name = name;
this.age = age;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public int getAge() {
return age;
}
public void setAge(int age) {
this.age = age;
}
}
输出结果:
22
23
DoubleAccumulator
:一个或多个变量,它们一起保持运行double使用所提供的功能更新值DoubleAdder
:一个或多个变量一起保持初始为零double总和LongAccumulator
:一个或多个变量,一起保持使用提供的功能更新运行的值long ,提供了自定义的函数操作LongAdder
:一个或多个变量一起维持初始为零long总和(重点),只能用来计算加法,且从0开始计算源码解读深度分析
longAccumulate
sum
■ sum()会将所有Cell数组中的value和base累加作为返回值。核心思想就是将之前AtomicLong一个value的更新压力分散到多个value中去,从而降级更新热点。
■ sum执行时,并没有限制对base和cells的更新,所以LongAdder不是强一致性的,它是最终一致性的,对cell的读取无法保证是最后一次写入的值,所以在没有并发的场景下,可以获得正确的结果。
使用总结