YOLOv5代码解析——train.py

发布时间:2023年12月25日

?????????train.py是训练YOLOV5使用的代码,后边根据函数调用展开。首先是主函数,显示有parse_opt()函数获得参数,然后把参数传给main函数。


if __name__ == '__main__':
    opt = parse_opt() # 获得参数
    main(opt) # 把参数传给main函数完成后续操作

1、parse_opt()函数主要用来加载参数,都有默认值,在使用的时候重新进行配置。

def parse_opt(known=False):
    parser = argparse.ArgumentParser()
    # 加载预训练权重
    parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='initial weights path')
    # 加载cfg配置文件(网络结构)
    parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
    # 加载数据集
    parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
    # 配置超参数
    parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch-low.yaml', help='hyperparameters path')
    # epochs 训练轮次
    parser.add_argument('--epochs', type=int, default=100, help='total training epochs')
    # batch-size 训练批次,默认16
    parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs, -1 for autobatch')
    # 设置图片大小
    parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)')
    # 是否采用矩形训练,默认False
    parser.add_argument('--rect', action='store_true', help='rectangular training')
    # 是否接着上次的训练结构继续训练
    parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
    # 不保存训练结果
    parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
    # noval 最后进行测试, 设置了之后就是训练结束都测试一下, 不设置每轮都计算mAP, 建议不设置#
    parser.add_argument('--noval', action='store_true', help='only validate final epoch')
    # 不自动调整anchor,默认为false(yolov5会根据数据集自动计算anchor,这是特色之一)
    parser.add_argument('--noautoanchor', action='store_true', help='disable AutoAnchor')
    parser.add_argument('--noplots', action='store_true', help='save no plot files')
    # 遗传算法调参
    parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')
    # 谷歌优盘(一般用不到)
    parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
    # cache 是否提前缓存图片到内存,以加快训练速度,默认False
    parser.add_argument('--cache', type=str, nargs='?', const='ram', help='image --cache ram/disk')
    # mage-weights 使用图片采样策略,默认不使用
    parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
    # gpu设备选择,
    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    # 多尺度训练
    parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
    # single-cls 数据集是否多类/默认True
    parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
    # # optimizer 优化器选择 / 提供了三种优化器
    parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW'], default='SGD', help='optimizer')
    # sync-bn:是否使用跨卡同步BN,在DDP模式使用
    parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
    # 使用的线程数量(谨慎选择,适度的workers有助于提升训练速度,workers过大反而会导致变慢)
    parser.add_argument('--workers', type=int, default=12, help='max dataloader workers (per RANK in DDP mode)')
    # 保存路径 / 默认保存路径 ./runs/ train
    parser.add_argument('--project', default=ROOT / 'runs/train', help='save to project/name')
    # 实验名称
    parser.add_argument('--name', default='exp', help='save to project/name')
    # 项目位置是否存在 / 默认是都不存在
    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
    parser.add_argument('--quad', action='store_true', help='quad dataloader')
    # 余弦学习率
    parser.add_argument('--cos-lr', action='store_true', help='cosine LR scheduler')
    # 标签平滑,默认不使用
    parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
    # 100次不更新就停止训练
    parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)')
    # --freeze冻结训练 可以设置 default = [0] 数据量大的情况下,建议不设置这个参数
    parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone=10, first3=0 1 2')
    # 多少个epoch保存一下checkpoint
    parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)')
    # 随机数种子
    parser.add_argument('--seed', type=int, default=0, help='Global training seed')
    # --local_rank 进程编号 / 多卡使用
    parser.add_argument('--local_rank', type=int, default=-1, help='Automatic DDP Multi-GPU argument, do not modify')

    # Logger arguments
    # # Weights & Biases arguments,类似于tensorboard的可视化工具
    parser.add_argument('--entity', default=None, help='Entity')
    parser.add_argument('--upload_dataset', nargs='?', const=True, default=False, help='Upload data, "val" option')
    parser.add_argument('--bbox_interval', type=int, default=-1, help='Set bounding-box image logging interval')
    parser.add_argument('--artifact_alias', type=str, default='latest', help='Version of dataset artifact to use')

    return parser.parse_known_args()[0] if known else parser.parse_args()

2、main函数这里没有介绍遗传净化算法,后边会更新博客单独介绍这一部分。

2.1?打印参数,检查环境
 # Checks
    if RANK in {-1, 0}:
        # 输出所有训练参数
        print_args(vars(opt))
        # 检查代码版本是否更新
        check_git_status()
        # 检查所需要的包是否都安装了
        check_requirements(ROOT / 'requirements.txt')
2.2 断点训练,判断是否要接着上一次的训练继续训练,如果是,就把参数替换为上一次的参数,如果不使用断点训练,直接加载参数并保存到一个文件中。
# Resume (from specified or most recent last.pt) 断点训练
    if opt.resume and not check_comet_resume(opt) and not opt.evolve:
        # isinstance()是否是已经知道的类型
        # 如果resume是True,则通过get_lastest_run()函数找到runs为文件夹中最近的权重文件last.pt
        last = Path(check_file(opt.resume) if isinstance(opt.resume, str) else get_latest_run())
        opt_yaml = last.parent.parent / 'opt.yaml'  # train options yaml
        opt_data = opt.data  # original dataset
        # 把opt的参数替换为last.pt中opt的参数
        if opt_yaml.is_file():
            with open(opt_yaml, errors='ignore') as f:
                d = yaml.safe_load(f)
        else:
            d = torch.load(last, map_location='cpu')['opt']
        opt = argparse.Namespace(**d)  # replace
        opt.cfg, opt.weights, opt.resume = '', str(last), True  # reinstate
        if is_url(opt_data):
            opt.data = check_file(opt_data)  # avoid HUB resume auth timeout
    # 不使用断点训练
    else:
        # 加载参数
        opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = \
            check_file(opt.data), check_yaml(opt.cfg), check_yaml(opt.hyp), str(opt.weights), str(opt.project)  # checks
        assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
        if opt.evolve:
            if opt.project == str(ROOT / 'runs/train'):  # if default project name, rename to runs/evolve
                opt.project = str(ROOT / 'runs/evolve')
            opt.exist_ok, opt.resume = opt.resume, False  # pass resume to exist_ok and disable resume
        if opt.name == 'cfg':
            opt.name = Path(opt.cfg).stem  # use model.yaml as name
        # 保存相关信息到文件中
        opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))

2.3?分布式训练

 # DDP mode
    # 选择device
    device = select_device(opt.device, batch_size=opt.batch_size) 
    if LOCAL_RANK != -1:
        msg = 'is not compatible with YOLOv5 Multi-GPU DDP training'
        assert not opt.image_weights, f'--image-weights {msg}'
        assert not opt.evolve, f'--evolve {msg}'
        assert opt.batch_size != -1, f'AutoBatch with --batch-size -1 {msg}, please pass a valid --batch-size'
        assert opt.batch_size % WORLD_SIZE == 0, f'--batch-size {opt.batch_size} must be multiple of WORLD_SIZE'
        assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command'
        # 根据编号选择设备
        #使用torch.cuda.set_device()可以更方便地将模型和数据加载到对应GPU上, 直接定义模型之前加入一行代码即可
        # torch.cuda.set_device(gpu_id) #单卡
        # torch.cuda.set_device('cuda:'+str(gpu_ids)) 
        #可指定多卡
        torch.cuda.set_device(LOCAL_RANK)
        device = torch.device('cuda', LOCAL_RANK)
        # 初始化多进程
        dist.init_process_group(backend='nccl' if dist.is_nccl_available() else 'gloo',
                                timeout=timedelta(seconds=10800))

3、train函数

3.1 train函数——基本配置信息

解析了从opt传入的参数,创建了训练结果的保存路径,对绘图的参数进行了配置。

##################### 基本信息配置 ##################################
    # 解析opt传入的参数
    save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze = \
        Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \
        opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze
    callbacks.run('on_pretrain_routine_start')

    # Directories
    w = save_dir / 'weights'  # weights dir
    # 创建保存训练结果的文件夹
    (w.parent if evolve else w).mkdir(parents=True, exist_ok=True)  # make dir
    # 保存训练结果的目录 ,如runs/train/exp1/weights/last.pt
    last, best = w / 'last.pt', w / 'best.pt'

    # Hyperparameters
    if isinstance(hyp, str):
        with open(hyp, errors='ignore') as f:
            hyp = yaml.safe_load(f)  # load hyps dict
    # 打印超参数,彩色字体
    LOGGER.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
    opt.hyp = hyp.copy()  # for saving hyps to checkpoints

    # Save run settings
    if not evolve:
        yaml_save(save_dir / 'hyp.yaml', hyp)
        yaml_save(save_dir / 'opt.yaml', vars(opt))

    # Loggers
    data_dict = None
    if RANK in {-1, 0}:
        loggers = Loggers(save_dir, weights, opt, hyp, LOGGER)  # loggers instance

        # Register actions
        for k in methods(loggers):
            callbacks.register_action(k, callback=getattr(loggers, k))

        # Process custom dataset artifact link
        data_dict = loggers.remote_dataset
        if resume:  # If resuming runs from remote artifact
            weights, epochs, hyp, batch_size = opt.weights, opt.epochs, opt.hyp, opt.batch_size

    # Config
    plots = not evolve and not opt.noplots  # create plots
    cuda = device.type != 'cpu'
    # 随机种子
    init_seeds(opt.seed + 1 + RANK, deterministic=True)
    # 存在子进程-分布式训练
    with torch_distributed_zero_first(LOCAL_RANK):
        data_dict = data_dict or check_dataset(data)  # check if None
    # 获取训练集和验证集的路径
    train_path, val_path = data_dict['train'], data_dict['val']
    # 设置类别,判断是否为蛋类
    nc = 1 if single_cls else int(data_dict['nc'])  # number of classes
    # 类别对应的名称
    names = {0: 'item'} if single_cls and len(data_dict['names']) != 1 else data_dict['names']  # class names
    # 判断是否是coco数据集
    is_coco = isinstance(val_path, str) and val_path.endswith('coco/val2017.txt')  # COCO dataset
3.2 train函数——模型加载/断点训练
# Model
    # 检查文件后缀是否是.pt
    check_suffix(weights, '.pt')  # check weights
    pretrained = weights.endswith('.pt')
    if pretrained:
         #  torch_distributed_zero_first(RANK): 用于同步不同进程对数据读取的上下文管理器
        with torch_distributed_zero_first(LOCAL_RANK):
            # 如果不存在就从网站上下载
            weights = attempt_download(weights)  # download if not found locally
        # 加载预训练模型及参数
        ckpt = torch.load(weights, map_location='cpu')  # load checkpoint to CPU to avoid CUDA memory leak
        """
        两种加载模型的方式: opt.cfg / ckpt['model'].yaml
        使用resume-断点训练: 选择ckpt['model']yaml创建模型, 且不加载anchor
        使用断点训练时,保存的模型会保存anchor,所以不需要加载

        """
        model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)  # create
        exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else []  # exclude keys
        # 筛选字典中断电键值对,把exclude删除
        csd = ckpt['model'].float().state_dict()  # checkpoint state_dict as FP32
        csd = intersect_dicts(csd, model.state_dict(), exclude=exclude)  # intersect
        model.load_state_dict(csd, strict=False)  # load
        LOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}')  # report
    else:
        # 不使用预训练权重
        model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)  # create
    amp = check_amp(model)  # check AMP
3.3 train函数——冻结训练层
 # Freeze  冻结网络的训练层 
    freeze = [f'model.{x}.' for x in (freeze if len(freeze) > 1 else range(freeze[0]))]  # layers to freeze
    for k, v in model.named_parameters():
        v.requires_grad = True  # train all layers
        # v.register_hook(lambda x: torch.nan_to_num(x))  # NaN to 0 (commented for erratic training results)
        if any(x in k for x in freeze):
            LOGGER.info(f'freezing {k}')
            # 冻结的训练层梯度不更新
            v.requires_grad = False
3.4 train函数——图片大小和batchsize设置
 # Image size
    gs = max(int(model.stride.max()), 32)  # grid size (max stride)
    # 检查图片大小
    imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2)  # verify imgsz is gs-multiple

    # Batch size
    if RANK == -1 and batch_size == -1:  # single-GPU only, estimate best batch size
        batch_size = check_train_batch_size(model, imgsz, amp)
        loggers.on_params_update({'batch_size': batch_size})
3.5 train函数——优化器设置
"""
    yolov5这里并不是根据batch size的大小去更新梯度,而是设置了一个固定的值
    nbs = 64
    batchsize = 16
    accumulate = 64/16=4 
    梯度累计accumlate次之后更新一次模型,相当于使用更大的batch_size
    """
    # Optimizer
    nbs = 64  # nominal batch size
    accumulate = max(round(nbs / batch_size), 1)  # accumulate loss before optimizing
    # 权重衰减参数
    hyp['weight_decay'] *= batch_size * accumulate / nbs  # scale weight_decay
    optimizer = smart_optimizer(model, opt.optimizer, hyp['lr0'], hyp['momentum'], hyp['weight_decay'])
3.6?train函数—— 学习率/EMA/显卡设置
# Scheduler
    # 是否使用余弦学习率调整方式
    if opt.cos_lr:
        lf = one_cycle(1, hyp['lrf'], epochs)  # cosine 1->hyp['lrf']
    else:
        lf = lambda x: (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf']  # linear
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)  # plot_lr_scheduler(optimizer, scheduler, epochs)

    # EMA 对模型的参数做平均,给予近期数据更高权重的平均方法
    ema = ModelEMA(model) if RANK in {-1, 0} else None

    # Resume
    best_fitness, start_epoch = 0.0, 0
    if pretrained:
        if resume:
            best_fitness, start_epoch, epochs = smart_resume(ckpt, optimizer, ema, weights, epochs, resume)
        del ckpt, csd

    # DP mode 单机多卡
    if cuda and RANK == -1 and torch.cuda.device_count() > 1:
        LOGGER.warning(
            'WARNING ?? DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.\n'
            'See Multi-GPU Tutorial at https://docs.ultralytics.com/yolov5/tutorials/multi_gpu_training to get started.'
        )
        model = torch.nn.DataParallel(model)

    # SyncBatchNorm 多卡归一化
    if opt.sync_bn and cuda and RANK != -1:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
        LOGGER.info('Using SyncBatchNorm()')
3.7 train函数——数据加载/anchor 调整
# Trainloader 训练集数据加载
    train_loader, dataset = create_dataloader(train_path,
                                              imgsz,
                                              batch_size // WORLD_SIZE,
                                              gs,
                                              single_cls,
                                              hyp=hyp,
                                              augment=True,
                                              cache=None if opt.cache == 'val' else opt.cache,
                                              rect=opt.rect,
                                              rank=LOCAL_RANK,
                                              workers=workers,
                                              image_weights=opt.image_weights,
                                              quad=opt.quad,
                                              prefix=colorstr('train: '),
                                              shuffle=True,
                                              seed=opt.seed)
    # mlc 标签编号最大值
    labels = np.concatenate(dataset.labels, 0)
    mlc = int(labels[:, 0].max())  # max label class
    # 判断编号是否正确
    assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}'

    # Process 0
    # 验证集数据加载
    if RANK in {-1, 0}:
        val_loader = create_dataloader(val_path,
                                       imgsz,
                                       batch_size // WORLD_SIZE * 2,
                                       gs,
                                       single_cls,
                                       hyp=hyp,
                                       cache=None if noval else opt.cache,
                                       rect=True,
                                       rank=-1,
                                       workers=workers * 2,
                                       pad=0.5,
                                       prefix=colorstr('val: '))[0]

        if not resume: # 不使用断点训练
            if not opt.noautoanchor:
                # dataset是在上边创建train_loader时生成的
                # hyp['anchor_t']是从配置文件hpy.scratch.yaml读取的超参数 anchor_t:4.0
                # 当配置文件中的anchor计算bpr(best possible recall)小于0.98时才会重新计算anchor
                # best possible recall最大值1,如果bpr小于0.98,程序会根据数据集的label自动学习anchor的尺寸
                check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)  # run AutoAnchor
            # 半精度
            model.half().float()  # pre-reduce anchor precision

        callbacks.run('on_pretrain_routine_end', labels, names)
3.8 train函数——训练配置
############# 训练配置 ##############
    # DDP mode 多机多卡
    if cuda and RANK != -1:
        model = smart_DDP(model)

    # Model attributes
    # smart_DDP和de_parallel代码在utils.torch_utils中
    # 对hpy字典中的一些值进行缩放和预设置,以适应不同的层级、类别、图像尺寸和标签平滑需求
    # 默认 nl = 3
    nl = de_parallel(model).model[-1].nl  # number of detection layers (to scale hyps)
    # hyp-low中给出的 box=0.05; cls=0.5; obj=1.0 
    # hyp['box'] = 0.05*3/3=0.05
    hyp['box'] *= 3 / nl  # scale to layers
    # hyp['cls'] = 0.5*20/80*3/3=0.125
    hyp['cls'] *= nc / 80 * 3 / nl  # scale to classes and layers
    # hyp['obj']=1.0*(640/640)**2*3/nl=1
    hyp['obj'] *= (imgsz / 640) ** 2 * 3 / nl  # scale to image size and layers
    hyp['label_smoothing'] = opt.label_smoothing
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    # 从训练样本标签得到类别权重(和类别中的目标数即类别频率成反比)
    model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc  # attach class weights
    model.names = names
3.9 train函数——训练

????????开始训练的代码,使用先前生成的trian_loader读取图片,送入模型开始训练,并计算损失进行反向传播,以及每轮训练后进行验证计算P,R,mAP等。

 ########################## Start training ##########################
    t0 = time.time()
    nb = len(train_loader)  # number of batches
    nw = max(round(hyp['warmup_epochs'] * nb), 100)  # number of warmup iterations, max(3 epochs, 100 iterations)
    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
    last_opt_step = -1
    # 初始化maps(每个类别的map)和results
    maps = np.zeros(nc)  # mAP per class
    results = (0, 0, 0, 0, 0, 0, 0)  # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
    # 设置学习率衰减所进行到的轮次,即使打断训练,使用resume接着训练也能正常衔接之前的训练进行学习率衰减
    scheduler.last_epoch = start_epoch - 1  # do not move
    # 设置amp混合精度训练
    scaler = torch.cuda.amp.GradScaler(enabled=amp)
    # 早停止
    stopper, stop = EarlyStopping(patience=opt.patience), False
    # 初始化损失
    compute_loss = ComputeLoss(model)  # init loss class
    callbacks.run('on_train_start')
    LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n'
                f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n'
                f"Logging results to {colorstr('bold', save_dir)}\n"
                f'Starting training for {epochs} epochs...')
    # 正式开始训练
    for epoch in range(start_epoch, epochs):  # epoch ------------------------------------------------------------------
        callbacks.run('on_train_epoch_start')
        model.train()

        # Update image weights (optional, single-GPU only)
        if opt.image_weights:
            """
            如果设置图片采样策略
            则根据前面初始化的图片采样权重model.class_weights以及maps配合每张图片包含的类别数
            通过random.choices生成图片所有indices从而进行采样
            """
            cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc  # class weights
            iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw)  # image weights
            dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n)  # rand weighted idx

        # Update mosaic border (optional)
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders

        mloss = torch.zeros(3, device=device)  # mean losses
        if RANK != -1:
            train_loader.sampler.set_epoch(epoch)
        pbar = enumerate(train_loader)
        LOGGER.info(('\n' + '%11s' * 7) % ('Epoch', 'GPU_mem', 'box_loss', 'obj_loss', 'cls_loss', 'Instances', 'Size'))
        if RANK in {-1, 0}:
            # 进度条显示
            pbar = tqdm(pbar, total=nb, bar_format=TQDM_BAR_FORMAT)  # progress bar
        optimizer.zero_grad() # 梯度清零
        for i, (imgs, targets, paths, _) in pbar:  # batch -------------------------------------------------------------
            callbacks.run('on_train_batch_start')
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = imgs.to(device, non_blocking=True).float() / 255  # uint8 to float32, 0-255 to 0.0-1.0
            
            """
            热身训练(前nw次迭代,一般是3)
            在前nw次迭代中,根据以下方式选取accumulate和学习率
            """
            # Warmup
            if ni <= nw:
                xi = [0, nw]  # x interp
                # compute_loss.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)
                accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
                for j, x in enumerate(optimizer.param_groups):
                     """
                        bias的学习率从0.1下降到基准学习率lr*lf(epoch),
                        其他的参数学习率从0增加到lr*lf(epoch).
                        lf为上面设置的余弦退火的衰减函数
                        动量momentum也从0.9慢慢变到hyp['momentum'](default=0.937)
                    """
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * lf(epoch)])
                    if 'momentum' in x:
                        x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])

            # Multi-scale
            if opt.multi_scale:
                """
                    Multi-scale  设置多尺度训练,从imgsz * 0.5, imgsz * 1.5 + gs随机选取尺寸
                """
                sz = random.randrange(int(imgsz * 0.5), int(imgsz * 1.5) + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]]  # new shape (stretched to gs-multiple)
                    imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)

            # Forward
            with torch.cuda.amp.autocast(amp):
                pred = model(imgs)  # forward
                # loss是总损失 loss_items是一个元组,包含分类损失,obj损失,boundingbox的回归损失和总损失
                loss, loss_items = compute_loss(pred, targets.to(device))  # loss scaled by batch_size
                if RANK != -1:
                    # 平均不同gpu之间的梯度
                    loss *= WORLD_SIZE  # gradient averaged between devices in DDP mode
                if opt.quad:
                    loss *= 4.

            # Backward
            scaler.scale(loss).backward()

            # Optimize - https://pytorch.org/docs/master/notes/amp_examples.html
            # 模型反向传播accumulate次之后再根据累计的梯度更新一次参数
            if ni - last_opt_step >= accumulate:
                scaler.unscale_(optimizer)  # unscale gradients
                torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0)  # clip gradients
                scaler.step(optimizer)  # optimizer.step
                scaler.update()
                optimizer.zero_grad()
                if ema:
                    ema.update(model)
                last_opt_step = ni

            # Log
            if RANK in {-1, 0}:
                mloss = (mloss * i + loss_items) / (i + 1)  # update mean losses
                mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G'  # (GB)
                pbar.set_description(('%11s' * 2 + '%11.4g' * 5) %
                                     (f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1]))
                callbacks.run('on_train_batch_end', model, ni, imgs, targets, paths, list(mloss))
                if callbacks.stop_training:
                    return
            # end batch ------------------------------------------------------------------------------------------------

        # Scheduler 学习率衰减
        lr = [x['lr'] for x in optimizer.param_groups]  # for loggers
        scheduler.step()

        if RANK in {-1, 0}:
            # mAP
            callbacks.run('on_train_epoch_end', epoch=epoch)
            # 把model中的属性赋值给ema
            ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights'])
            # 判断是否是最后一轮
            final_epoch = (epoch + 1 == epochs) or stopper.possible_stop
            # notest: 是否只测试最后一轮  True: 只测试最后一轮   False: 每轮训练完都测试mAP
            if not noval or final_epoch:  # Calculate mAP
                # 测试使用的是ema(对模型的参数做平均)模型
                # verbose设置为true后,每轮的验证都输出每个类别的信息
                results, maps, _ = validate.run(data_dict,
                                                batch_size=batch_size // WORLD_SIZE * 2,
                                                imgsz=imgsz,
                                                half=amp,
                                                model=ema.ema,
                                                single_cls=single_cls,
                                                dataloader=val_loader,
                                                save_dir=save_dir,
                                                plots=False,
                                                callbacks=callbacks,
                                                compute_loss=compute_loss,
                                                verbose=True)

            # Update best mAP
            fi = fitness(np.array(results).reshape(1, -1))  # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
            stop = stopper(epoch=epoch, fitness=fi)  # early stop check
            if fi > best_fitness:
                best_fitness = fi
            log_vals = list(mloss) + list(results) + lr
            callbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness, fi)

            # Save model
            """
                保存带checkpoint的模型用于inference或resuming training
                保存模型的同时还保存epoch,results,optimizer等信息
                optimizer在最后一轮不会报错
                model保存的是EMA后的模型
            """
            if (not nosave) or (final_epoch and not evolve):  # if save
                ckpt = {
                    'epoch': epoch,
                    'best_fitness': best_fitness,
                    'model': deepcopy(de_parallel(model)).half(),
                    'ema': deepcopy(ema.ema).half(),
                    'updates': ema.updates,
                    'optimizer': optimizer.state_dict(),
                    'opt': vars(opt),
                    'git': GIT_INFO,  # {remote, branch, commit} if a git repo
                    'date': datetime.now().isoformat()}

                # Save last, best and delete
                torch.save(ckpt, last)
                if best_fitness == fi:
                    torch.save(ckpt, best)
                if opt.save_period > 0 and epoch % opt.save_period == 0:
                    torch.save(ckpt, w / f'epoch{epoch}.pt')
                del ckpt
                callbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi)

        # EarlyStopping
        if RANK != -1:  # if DDP training
            broadcast_list = [stop if RANK == 0 else None]
            dist.broadcast_object_list(broadcast_list, 0)  # broadcast 'stop' to all ranks
            if RANK != 0:
                stop = broadcast_list[0]
        if stop:
            break  # must break all DDP ranks

        # end epoch ----------------------------------------------------------------------------------------------------
    # end training --------------------------

3.10 train函数——打印训练信息

 ############################ 打印训练信息 #########################
    if RANK in {-1, 0}:
        LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.')
        for f in last, best:
            if f.exists():
                strip_optimizer(f)  # strip optimizers
                if f is best:
                    LOGGER.info(f'\nValidating {f}...')
                    results, _, _ = validate.run(
                        data_dict,
                        batch_size=batch_size // WORLD_SIZE * 2,
                        imgsz=imgsz,
                        model=attempt_load(f, device).half(),
                        iou_thres=0.65 if is_coco else 0.60,  # best pycocotools at iou 0.65
                        single_cls=single_cls,
                        dataloader=val_loader,
                        save_dir=save_dir,
                        save_json=is_coco,
                        verbose=True,
                        plots=plots,
                        callbacks=callbacks,
                        compute_loss=compute_loss)  # val best model with plots
                    if is_coco:
                        callbacks.run('on_fit_epoch_end', list(mloss) + list(results) + lr, epoch, best_fitness, fi)

        callbacks.run('on_train_end', last, best, epoch, results)

    torch.cuda.empty_cache() # 释放显存
    return results

4、代码使用

????????使用的命令如下,主要指定数据 --data 、权重 --weights 和模型配置文件 --cfg,其他参数选择使用。为了方便建议写入到xxx.sh文件进行运行,如果权限不够无法使用./xxx.sh运行,使用chmod +777 xxx.sh修改权限,就可以运行了。

 python train.py --data ./data/mydata.yaml --weight ./weights/yolov5l.pt --cfg ./models/yolov5l.yaml 
文章来源:https://blog.csdn.net/yrhzmu/article/details/135192283
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。