深入理解可变参数

发布时间:2024年01月04日

1.C语言方式

1.1.宏介绍

C语言中的可变参数是指函数可以接受可变数量的参数。这些参数的数量在编译时是未知的。在这些可变参数中的参数类型可以相同,也可以不同;可变参数的每个参数并没有实际的名称与之相对应,用起来是很灵活;在头文件stdarg.h中,涉及到的宏有:
????????????????va_list :? ?是指向参数的指针 ,通过指针运算来调整访问的对象
????????????????va_start :获取可变参数列表的第一个参数的地址
????????????????va_arg : 获取可变参数的当前参数,返回指定类型并将指针指向下一参数
????????????????va_end : 清空va_list可变参数列表

1.2.原理详解

函数的参数是存放在栈中,地址是连续的,所以可以通过相对位置去访问,这也是可变参数的访问方式;变长参数的实现需要依赖于C语言默认的cdecl调用惯例的自右向左压栈传递方式;可变参数是由1.1介绍的几个宏来实现,但是由于硬件平台的不同,编译器的不同,宏的定义也不相同,下面是AMD CPU?x64平台下的定义:

typedef char* va_list;

va_list的定义

//[1]
#ifdef __cplusplus
#define _ADDRESSOF(v) (&reinterpret_cast<const char &>(v))
#else
#define _ADDRESSOF(v) (&(v))
#endif

//[2]
#define va_start _crt_va_start
#define va_arg   _crt_va_arg
#define va_end   _crt_va_end
#define va_copy(destination, source) ((destination) = (source))

//[3]
#define _PTRSIZEOF(n) ((sizeof(n) + sizeof(void*) - 1) & ~(sizeof(void*) - 1))//系统内存对齐
#define _ISSTRUCT(t)  ((sizeof(t) > sizeof(void*)) || (sizeof(t) & (sizeof(t) - 1)) != 0)
#define _crt_va_start(v,l)	((v) = (va_list)_ADDRESSOF(l) + _PTRSIZEOF(l))
#define _crt_va_arg(v,t)	_ISSTRUCT(t) ?						\
				 (**(t**)(((v) += sizeof(void*)) - sizeof(void*))) :	\
				 ( *(t *)(((v) += sizeof(void*)) - sizeof(void*)))
#define _crt_va_end(v)		((v) = (va_list)0)
#define _crt_va_copy(d,s)	((d) = (s))

从上面的源码可以看出:
1) va_list??v; 定义一个指向char类型的指针v。
2) va_start(v,l) ;执行 v = (va_list)&l + _PTRSIZEOF(l) ,v指向参数 l 之后的那个参数的地址,即 v指向第一个可变参数在堆栈的地址。
3) va_arg(v,t) , ( (t )((v += _PTRSIZEOF(t)) - _PTRSIZEOF(t)) ) 取出当前v指针所指的值,并使 v 指向下一个参数。 v+=sizeof(t类型) ,让v指向下一个参数的地址。然后返回 v - sizeof(t类型) 的t类型指针,这正是第一个可变参数在堆栈里的地址。然后 用取得这个地址的内容。
va_end(v) ; 清空 va_list v。

1.3.案例分析

#include <iostream>
#include <stdarg.h>

void printValues(const char* format, ...) {
	va_list args;  // 定义一个va_list类型的变量
	va_start(args, format);  // 初始化args

	for (const char* arg = format; *arg != '\0'; ++arg) {
		if (*arg == '%') {
			++arg;
			switch (*arg) {
			case 'd':  // 对于整数
				std::cout << va_arg(args, int);
				break;
			case 's':  // 对于字符串
				std::cout << va_arg(args, char*);
				break;
			default:
				std::cout << "Invalid format specifier: " << *arg;
			}
		}
		else {
			std::cout << *arg;
		}
	}
	va_end(args);  // 清理va_list变量
}

int main() {
	printValues("say self info: %s, age %d\n", "xiao", 45);  //输出: say self info xiao, age 45
	return 0;
}

printValues函数调用的时候展开为:

void printValues(const char* format, const char* param1, int param2)

从上面的代码来分析一下这个示例:在windows中,栈由高地址往低地址生长,调用printValues函数时,其参数入栈情况如下:

当调用va_start(args, format)时:args指针指向情况对应下图:

????????当调用va_arg(args, ...)时,它必须返回一个由va_list所指向的恰当的类型的数值,同时递增args,使它指向参数列表中的一个参数(即递增的大小等于与va_arg宏所返回的数值具有相同类型的对象的长度)。因为类型转换的结果不能作为赋值运算的目标,所以va_arg宏首先使用sizeof来确定需要递增的大小,然后把它直接加到va_list上,这样得到的指针再被转换为要求的类型。

????????在上面的示例中,我们定义了一个名为printValues的函数,它接受一个格式字符串和一个可变数量的参数。我们使用va_list、va_start、va_arg和va_end这些宏来处理可变参数。在格式字符串中,我们使用%来指定参数的类型,例如%d表示整数,%s表示字符串。然后,我们使用va_arg宏来获取相应的参数值。最后,我们使用va_end宏来清理va_list变量。

1.4.其他实例

1) printf实现

#include <stdarg.h>

int printf(char *format, ...)
{
    va_list ap;
    int n;
     
    va_start(ap, format);
    n = vprintf(format, ap);
    va_end(ap);
    return n;    
}

2)定制错误打印函数error

#include  <stdio.h>
#include  <stdarg.h>

void error(char *format, ...)
{
    va_list ap;
    va_start(ap, format);
    fprintf(stderr, "Error: ");
    vfprintf(stderr, format, ap);
    va_end(ap);
    fprintf(stderr, "\n");
    return;    
}

2.C++之std::initializer_list

????????在C++中我们一般用()和=初始化参数或对象,还可以用{}来初始化参数或对象,比如数组的初始化int m[] = {1,4,5},除了数组,在STL里面很多标准的容器和自定义类型都用{}?进行初始化。

????????自C++11标准开始就引入了列表初始化的概念,即支持使用{}对变量或对象进行初始化,且与传统的变量初始化的规则一样,也分为拷贝初始化和直接初始化两种方式。

2.1.简介

std::initializer_list<T> 类型对象是一个访问 const T 类型对象数组的轻量代理对象。
std::initializer_list 对象在这些时候自动构造:
1)用花括号初始化器列表列表初始化一个对象,其中对应构造函数接受一个 std::initializer_list 参数,如std::vector的构造函数? vector(initializer_list<_Ty> _Ilist, const _Alloc& _Al = _Alloc())
2)以花括号初始化器列表为赋值的右运算数,或函数调用参数,而对应的赋值运算符/函数接受 std::initializer_list 参数
3)绑定花括号初始化器列表到 auto ,包括在范围 for 循环中

initializer_list 可由一对指针或指针与其长度实现。复制一个 std::initializer_list 不会复制其底层对象。

注意:

a、底层数组不保证在原始 initializer_list 对象的生存期结束后继续存在。?std::initializer_list?的存储是未指定的(即它可以是自动、临时或静态只读内存,依赖场合)。

b、底层数组是?const?T[N]?类型的临时数组,其中每个元素都从原始初始化器列表的对应元素复制初始化(除非窄化转换非法)。底层数组的生存期与任何其他临时对象相同,除了从数组初始化 initializer_list 对象会延长数组的生存期,恰如绑定引用到临时量(有例外,例如对于初始化非静态类成员)。底层数组可以分配在只读内存。

c、若声明了?std::initializer_list?的显式或偏特化则程序为谬构。

2.2.原理详解

源码面前无秘密,直接上源码:

template <class _Elem>
class initializer_list {
public:
    using value_type      = _Elem;
    using reference       = const _Elem&;
    using const_reference = const _Elem&;
    using size_type       = size_t;

    using iterator       = const _Elem*;
    using const_iterator = const _Elem*;

    constexpr initializer_list() noexcept : _First(nullptr), _Last(nullptr) {}  //1

    constexpr initializer_list(const _Elem* _First_arg, const _Elem* _Last_arg) noexcept
        : _First(_First_arg), _Last(_Last_arg) {}                               //2

    _NODISCARD constexpr const _Elem* begin() const noexcept {
        return _First;
    }

    _NODISCARD constexpr const _Elem* end() const noexcept {
        return _Last;
    }

    _NODISCARD constexpr size_t size() const noexcept {
        return static_cast<size_t>(_Last - _First);
    }

private:
    const _Elem* _First;
    const _Elem* _Last;
};

// FUNCTION TEMPLATE begin
template <class _Elem>
_NODISCARD constexpr const _Elem* begin(initializer_list<_Elem> _Ilist) noexcept {
    return _Ilist.begin();
}

// FUNCTION TEMPLATE end
template <class _Elem>
_NODISCARD constexpr const _Elem* end(initializer_list<_Elem> _Ilist) noexcept {
    return _Ilist.end();
}

????????从上面的STL的std::initializer_list源码来看,std::initializer_list是一个模版类,定义了指向该类对象首端、尾端的迭代器(即常量对象指针const T*),实际上就是对{}表达式内容的简单封装,当使用{}时,就会调用 initializer_list(const _Elem* _First_arg, const _Elem* _Last_arg) 构造出std::initializer_list。

????????当得到了一个std::initializer_list对象后,再来寻找标准容器中以std::initializer_list为形参的构造函数,并调用该构造函数对容器进行初始化。

2.3.案例分析

示例1:

class IMessageField1 {};

//1
void  addMessageField(std::initializer_list<IMessageField1*> t)
{
	std::vector<IMessageField1*>  pTest(t);
}

#if  0
//2
void  addMessageField(std::vector<IMessageField1*> t)
{
	std::vector<IMessageField1*>  pTest(t);
}
#endif

void  main()
{
	//[1]
	std::unique_ptr<IMessageField1> a(new IMessageField1);
	std::unique_ptr<IMessageField1> b(new IMessageField1);
	std::unique_ptr<IMessageField1> c(new IMessageField1);
	std::unique_ptr<IMessageField1> d(new IMessageField1);
	std::unique_ptr<IMessageField1> e(new IMessageField1);
	addMessageField({ a.get(), b.get(), c.get(), d.get(), e.get() });
}

? ?上面代码1和2的方式都可以实现功能,2的方式实际上也是先临时生成一个std::initializer_list,再调用std::vector的构造函数临时生成一个std::vector,最后再用刚生成的std::vector初始化pTest,相比1的方式,多了几重复制,效率比较低,一般采用1的方式实现功能。

示例2:

#include <iostream>
#include <vector>
#include <initializer_list>
 
template <class T>
struct S {
    std::vector<T> v;
    S(std::initializer_list<T> l) : v(l) {
         std::cout << "constructed with a " << l.size() << "-element list\n";
    }
    void append(std::initializer_list<T> l) {
        v.insert(v.end(), l.begin(), l.end());
    }
    std::pair<const T*, std::size_t> c_arr() const {
        return {&v[0], v.size()};  // 在 return 语句中复制列表初始化
                                   // 这不使用 std::initializer_list
    }
};
 
template <typename T>
void templated_fn(T) {}
 
int main()
{
	int a1[] = { 1,2,3,4,5,6 }; //数组拷贝初始化
	int a2[]{ 5,6,7,8,9,0 };   //数组直接初始化

    S<int> s = {1, 2, 3, 4, 5}; // 复制初始化
    s.append({6, 7, 8});      // 函数调用中的列表初始化
 
    std::cout << "The vector size is now " << s.c_arr().second << " ints:\n";
 
    for (auto n : s.v)
        std::cout << n << ' ';
    std::cout << '\n';
 
    std::cout << "Range-for over brace-init-list: \n";
 
    for (int x : {-1, -2, -3}) // auto 的规则令此带范围 for 工作
        std::cout << x << ' ';
    std::cout << '\n';
 
    auto al = {10, 11, 12};   // auto 的特殊规则
 
    std::cout << "The list bound to auto has size() = " << al.size() << '\n';
 
//    templated_fn({1, 2, 3}); // 编译错误!“ {1, 2, 3} ”不是表达式,
                             // 它无类型,故 T 无法推导
    templated_fn<std::initializer_list<int>>({1, 2, 3}); // OK
    templated_fn<std::vector<int>>({1, 2, 3});           // 也 OK
}

输出:

constructed with a 5-element list
The vector size is now 8 ints:
1 2 3 4 5 6 7 8
Range-for over brace-init-list: 
-1 -2 -3 
The list bound to auto has size() = 3

示例3:

struct MyTest{
	explicit  X(int a, int b) :a(a), b(b) { std::cout << "MyTest(int a,int b)\n"; }

	int a{};
	int b{};
};

int main() {
	MyTest x{ 1,2 }; //OK
	MyTest x2( 1,2 ); //OK
	MyTest x3 = { 1,2 }; //Error
}

MyTest x3 ={1,2};?参考复制初始化的规则:复制列表初始化(考虑 explicit 和非 explicit 构造函数,但只能调用非 explicit 构造函数)

后面继续。。。

文章来源:https://blog.csdn.net/haokan123456789/article/details/135371987
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。