NumPy 中级教程——广播(Broadcasting)

发布时间:2023年12月30日

Python NumPy 中级教程:广播(Broadcasting)

在 NumPy 中,广播是一种强大的机制,它允许不同形状的数组在进行操作时,自动进行形状的调整,使得它们能够完成一致的运算。广播使得对数组的操作更加灵活,避免了显式的形状匹配操作,提高了代码的简洁性。在本篇博客中,我们将深入介绍 NumPy 中的广播机制,并通过实例演示如何应用这一功能。

1. 安装 NumPy

确保你已经安装了 NumPy。如果尚未安装,可以使用以下命令:

pip install numpy

2. 导入 NumPy 库

在使用 NumPy 进行广播操作之前,导入 NumPy 库:

import numpy as np

3. 广播的基本原则

广播的基本原则有两点:

  • 如果数组的维度不同,将维度较小的数组进行扩展,直到两个数组的维度均相同。
  • 如果两个数组在某个维度上的大小是不一致的,那么在该维度上,将大小为1的数组进行扩展,使其大小与另一个数组相同。

4. 二维数组的广播

4.1 形状相同的广播
# 形状相同的广播
arr1 = np.array([[1, 2, 3], [4, 5, 6]])
arr2 = np.array([[2, 2, 2], [3, 3, 3]])
result = arr1 * arr2
4.2 形状不同的广播
# 形状不同的广播
arr1 = np.array([[1, 2, 3], [4, 5, 6]])
arr2 = np.array([2, 2, 2])
result = arr1 * arr2

5. 三维数组的广播

# 三维数组的广播
arr1 = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])
arr2 = np.array([[2, 2, 2], [3, 3, 3]])
result = arr1 * arr2[:, np.newaxis, :]

6. 广播的应用

6.1 数组与标量的广播
# 数组与标量的广播
arr = np.array([[1, 2, 3], [4, 5, 6]])
result = arr + 10
6.2 形状不同的广播应用
# 形状不同的广播应用
arr1 = np.array([[1, 2, 3], [4, 5, 6]])
arr2 = np.array([[2], [3]])
result = arr1 + arr2

7. 广播的注意事项

在使用广播时,需要注意以下事项:

  1. 广播操作是在内存中节省空间的有效手段,但过度使用广播可能会导致代码不易理解。
  2. 尽量保持数组形状的一致性,以减少广播的使用。
  3. 了解广播机制对于理解代码和提高效率都是重要的。

8. 总结

通过学习以上 NumPy 中的广播机制,你可以更灵活地处理不同形状的数组,进行一致的运算。广播使得代码更加简洁、可读,减少了显式的形状匹配操作,提高了代码的可维护性。希望本篇博客能够帮助你更好地理解和运用 NumPy 中的广播功能。

文章来源:https://blog.csdn.net/weixin_46178278/article/details/135301894
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。