【MMdetection】MMdetection从入门到进阶

发布时间:2023年12月31日

在这里插入图片描述

基础环境安装

步骤 0. 从官方网站下载并安装 Miniconda。

步骤 1. 创建并激活一个 conda 环境。

conda create --name openmmlab python=3.8 -y
conda activate openmmlab

步骤 2. 基于 PyTorch 官方说明安装 PyTorch。

pip install torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 --index-url https://download.pytorch.org/whl/cu118

开始

步骤 0. 使用 MIM 安装 MMEngine 和 MMCV。

pip install -U openmim
mim install mmengine
mim install "mmcv>=2.0.0"

步骤 1. 安装 MMDetection。

  • 源码安装
git clone https://github.com/open-mmlab/mmdetection.git
cd mmdetection
pip install -v -e .
# "-v" 指详细说明,或更多的输出
# "-e" 表示在可编辑模式下安装项目,因此对代码所做的任何本地修改都会生效,从而无需重新安装。
  • 第三方库
mim install mmdet

验证安装

步骤 1. 我们需要下载配置文件和模型权重文件。

mim download mmdet --config rtmdet_tiny_8xb32-300e_coco --dest .

步骤 2. 推理验证。
方案 a:如果你通过源码安装的 MMDetection,那么直接运行以下命令进行验证:

python demo/image_demo.py demo/demo.jpg rtmdet_tiny_8xb32-300e_coco.py --weights rtmdet_tiny_8xb32-300e_coco_20220902_112414-78e30dcc.pth --device cpu

你会在当前文件夹中的 outputs/vis 文件夹中看到一个新的图像 demo.jpg,图像中包含有网络预测的检测框。

方案 b:如果你通过 MIM 安装的 MMDetection,那么可以打开你的 Python 解析器,复制并粘贴以下代码:

from mmdet.apis import init_detector, inference_detector

config_file = 'rtmdet_tiny_8xb32-300e_coco.py'
checkpoint_file = 'rtmdet_tiny_8xb32-300e_coco_20220902_112414-78e30dcc.pth'
model = init_detector(config_file, checkpoint_file, device='cpu')  # or device='cuda:0'
inference_detector(model, 'demo/demo.jpg')

你将会看到一个包含 DetDataSample 的列表,预测结果在 pred_instance 里,包含有检测框,类别和得分。

自定义安装

pip install mmengine
pip install "mmcv>=2.0.0" -f https://download.openmmlab.com/mmcv/dist/cu116/torch1.12.0/index.html

参考链接:
https://mmdetection.readthedocs.io/zh-cn/3.x/get_started.html

文章来源:https://blog.csdn.net/qq_44091004/article/details/135320177
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。