在大型系统的微服务化构建中,一个系统被拆分成了许多模块。这些模块负责不同的功能,组合成
系统,最终可以提供丰富的功能。在这种架构中,一次请求往往需要涉及到多个服务。互联网应用构建
在不同的软件模块集上,这些软件模块,有可能是由不同的团队开发、可能使用不同的编程语言来实
现、有可能布在了几千台服务器,横跨多个不同的数据中心,也就意味着这种架构形式也会存在一些问
题:
SpringCloud Sleuth主要功能就是在分布式系统中提供追踪解决方案。它大量借用了Google
Dapper的设计, 先来了解一下Sleuth中的术语和相关概念。
微服务名称, traceId, spanid,是否将链路的追踪结果输出到第三方平台
[api-gateway,3977125f73391553,3977125f73391553,false]
[service-order,3977125f73391553,57547b5bf71f8242,false]
[service-product,3977125f73391553,449f5b3f3ef8d5c5,false]
接下来通过之前的项目案例整合Sleuth,完成入门案例的编写。
修改父工程引入Sleuth依赖。
<!--链路追踪 Sleuth-->
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-sleuth</artifactId>
</dependency>
启动微服务,调用之后,我们可以在控制台观察到sleuth的日志输出
其中 5399d5cb061971bd 是TraceId, 5399d5cb061971bd 是SpanId,依次调用有一个全局的
TraceId,将调用链路串起来。仔细分析每个微服务的日志,不难看出请求的具体过程。
查看日志文件并不是一个很好的方法,当微服务越来越多日志文件也会越来越多,通过Zipkin可以
将日志聚合,并进行可视化展示和全文检索。
Zipkin 是 Twitter 的一个开源项目,它基于Google Dapper实现,它致力于收集服务的定时数据,
以解决微服务架构中的延迟问题,包括数据的收集、存储、查找和展现。
我们可以使用它来收集各个服务器上请求链路的跟踪数据,并通过它提供的REST API接口来辅助我
们查询跟踪数据以实现对分布式系统的监控程序,从而及时地发现系统中出现的延迟升高问题并找出系
统性能瓶颈的根源。
除了面向开发的 API 接口之外,它也提供了方便的UI组件来帮助我们直观的搜索跟踪信息和分析请
求链路明细,比如:可以查询某段时间内各用户请求的处理时间等。
Zipkin 提供了可插拔数据存储方式:In-Memory、MySql、Cassandra 以及 Elasticsearch。
上图展示了 Zipkin 的基础架构,它主要由 4 个核心组件构成:
第1步: 下载ZipKin的jar包
https://search.maven.org/remote_content?g=io.zipkin.java&a=zipkinserver&v=LATEST&c=exec
访问上面的网址,即可得到一个jar包,这就是ZipKin服务端的jar包
第2步: 通过命令行,输入下面的命令启动ZipKin Server
java -jar zipkin-server-2.12.9-exec.jar
第3步:通过浏览器访问 http://localhost:9411访问
ZipKin客户端和Sleuth的集成非常简单,只需要在微服务中添加其依赖和配置即可。
第1步:在每个微服务上添加依赖
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-zipkin</artifactId>
</dependency>
第2步:添加配置
spring:
zipkin:
base-url: http://127.0.0.1:9411/ #zipkin server的请求地址
discoveryClientEnabled: false #让nacos把它当成一个URL,而不要当做服务名
sleuth:
sampler:
probability: 1.0 #采样的百分比
第3步: 访问微服务
http://localhost:7000/order-serv/order/prod/1
第4步: 访问zipkin的UI界面,观察效果
第5步:点击其中一条记录,可观察一次访问的详细线路。
Zipkin Server默认会将追踪数据信息保存到内存,但这种方式不适合生产环境。Zipkin支持将追踪
数据持久化到mysql数据库或elasticsearch中。
第1步: 创建mysql数据环境
CREATE TABLE IF NOT EXISTS zipkin_spans (
`trace_id_high` BIGINT NOT NULL DEFAULT 0 COMMENT 'If non zero, this
means the trace uses 128 bit traceIds instead of 64 bit',
`trace_id` BIGINT NOT NULL,
`id` BIGINT NOT NULL,
`name` VARCHAR(255) NOT NULL,
`parent_id` BIGINT,
`debug` BIT(1),
`start_ts` BIGINT COMMENT 'Span.timestamp(): epoch micros used for endTs
query and to implement TTL',
`duration` BIGINT COMMENT 'Span.duration(): micros used for minDuration
and maxDuration query'
) ENGINE=InnoDB ROW_FORMAT=COMPRESSED CHARACTER SET=utf8 COLLATE
utf8_general_ci;
ALTER TABLE zipkin_spans ADD UNIQUE KEY(`trace_id_high`, `trace_id`, `id`)
COMMENT 'ignore insert on duplicate';
ALTER TABLE zipkin_spans ADD INDEX(`trace_id_high`, `trace_id`, `id`)
COMMENT 'for joining with zipkin_annotations';
ALTER TABLE zipkin_spans ADD INDEX(`trace_id_high`, `trace_id`) COMMENT 'for
getTracesByIds';
ALTER TABLE zipkin_spans ADD INDEX(`name`) COMMENT 'for getTraces and
getSpanNames';
ALTER TABLE zipkin_spans ADD INDEX(`start_ts`) COMMENT 'for getTraces
ordering and range';
CREATE TABLE IF NOT EXISTS zipkin_annotations (
`trace_id_high` BIGINT NOT NULL DEFAULT 0 COMMENT 'If non zero, this
means the trace uses 128 bit traceIds instead of 64 bit',
`trace_id` BIGINT NOT NULL COMMENT 'coincides with
zipkin_spans.trace_id',
`span_id` BIGINT NOT NULL COMMENT 'coincides with zipkin_spans.id',
`a_key` VARCHAR(255) NOT NULL COMMENT 'BinaryAnnotation.key or
Annotation.value if type == -1',
`a_value` BLOB COMMENT 'BinaryAnnotation.value(), which must be smaller
than 64KB',
`a_type` INT NOT NULL COMMENT 'BinaryAnnotation.type() or -1 if
Annotation',
`a_timestamp` BIGINT COMMENT 'Used to implement TTL;
Annotation.timestamp or zipkin_spans.timestamp',
`endpoint_ipv4` INT COMMENT 'Null when Binary/Annotation.endpoint is
null',
`endpoint_ipv6` BINARY(16) COMMENT 'Null when Binary/Annotation.endpoint
is null, or no IPv6 address',
`endpoint_port` SMALLINT COMMENT 'Null when Binary/Annotation.endpoint
is null',
`endpoint_service_name` VARCHAR(255) COMMENT 'Null when
Binary/Annotation.endpoint is null'
) ENGINE=InnoDB ROW_FORMAT=COMPRESSED CHARACTER SET=utf8 COLLATE
utf8_general_ci;
ALTER TABLE zipkin_annotations ADD UNIQUE KEY(`trace_id_high`, `trace_id`,
`span_id`, `a_key`, `a_timestamp`) COMMENT 'Ignore insert on duplicate';
ALTER TABLE zipkin_annotations ADD INDEX(`trace_id_high`, `trace_id`,
`span_id`) COMMENT 'for joining with zipkin_spans';
ALTER TABLE zipkin_annotations ADD INDEX(`trace_id_high`, `trace_id`)
COMMENT 'for getTraces/ByIds';
ALTER TABLE zipkin_annotations ADD INDEX(`endpoint_service_name`) COMMENT
'for getTraces and getServiceNames';
ALTER TABLE zipkin_annotations ADD INDEX(`a_type`) COMMENT 'for getTraces';
ALTER TABLE zipkin_annotations ADD INDEX(`a_key`) COMMENT 'for getTraces';
ALTER TABLE zipkin_annotations ADD INDEX(`trace_id`, `span_id`, `a_key`)
COMMENT 'for dependencies job';
CREATE TABLE IF NOT EXISTS zipkin_dependencies (
`day` DATE NOT NULL,
`parent` VARCHAR(255) NOT NULL,
`child` VARCHAR(255) NOT NULL,
`call_count` BIGINT
) ENGINE=InnoDB ROW_FORMAT=COMPRESSED CHARACTER SET=utf8 COLLATE
utf8_general_ci;
ALTER TABLE zipkin_dependencies ADD UNIQUE KEY(`day`, `parent`, `child`);
第2步: 在启动ZipKin Server的时候,指定数据保存的mysql的信息
java -jar zipkin-server-2.12.9-exec.jar --STORAGE_TYPE=mysql --MYSQL_HOST=127.0.0.1 --MYSQL_TCP_PORT=3306 --MYSQL_DB=zipkin --MYSQL_USER=root --MYSQL_PASS=root
第1步: 下载elasticsearch
下载地址:https://www.elastic.co/cn/downloads/past-releases/elasticsearch-6-8-4
第2步: 启动elasticsearch
第3步: 在启动ZipKin Server的时候,指定数据保存的elasticsearch的信息
java -jar zipkin-server-2.12.9-exec.jar --STORAGE_TYPE=elasticsearch -ESHOST=localhost:9200