Pure Mathematics 3-(磨课课件)-反三角函数求导(更新中)

发布时间:2024年01月10日

6.6 Differentiating trigonometric functions(反三角函数求导)
Edexcel Pure Mathematics 3(2018版本教材)
/--------------------------------------------------------------------------------------------------------------------
Prior Knowledge(预备知识温习)
( s i n x ) ′ = c o s x + C (sinx)'=cosx+C (sinx)=cosx+C
( c o s x ) ′ = ? s i n x + C (cosx)'=-sinx+C (cosx)=?sinx+C
( u v ) ′ = u ′ v ? v ′ u v 2 (\frac{u}{v})'=\frac{u'v-v'u}{v^2} (vu?)=v2uv?vu?
④三角形六边形法则-对角线上 两个函数互为倒数
对角线上 两个函数互为倒数
对角线上 两个函数互为倒数

根据上述知识,我们下面看一道 习题
Example 14
If y = k ? t a n x y=k·tanx y=k?tanx,find d y d x \frac{dy}{dx} dxdy?

Solution:
y = k tan ? x = k sin ? x cos ? x ?Let? u = sin ? x v = cos ? x d u d x = cos ? x ?and? d v d x = ? sin ? x d y d x = k v d u d x ? u d v d x v 2 = k cos ? x × cos ? x ? sin ? x ( ? sin ? x ) cos ? 2 x = k cos ? 2 x + sin ? 2 x cos ? 2 x = k 1 cos ? 2 x = k sec ? 2 x \begin{array}{l} y=k\tan x=k\frac{\sin x}{\cos x} \\ \text { Let } u=\sin x \text v=\cos x \\ \qquad \begin{aligned} \frac{d u}{d x} & =\cos x \text { and } \frac{d v}{d x}=-\sin x \\ \frac{d y}{d x} & =k\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}} \\ & =k\frac{\cos x \times \cos x-\sin x(-\sin x)}{\cos ^{2} x} \\ & =k\frac{\cos ^{2} x+\sin ^{2} x}{\cos ^{2} x} \\ & =k\frac{1}{\cos ^{2} x}=k\sec ^{2} x \end{aligned} \end{array} y=ktanx=kcosxsinx??Let?u=sinxv=cosxdxdu?dxdy??=cosx?and?dxdv?=?sinx=kv2vdxdu??udxdv??=kcos2xcosx×cosx?sinx(?sinx)?=kcos2xcos2x+sin2x?=kcos2x1?=ksec2x??

Prior Knowledge(预备知识温习)
( u v ) ′ = u ′ v + u v ′ (uv)'=u'v+uv' (uv)=uv+uv
( t a n x ) ′ = s e c 2 x (tanx)'=sec^2x (tanx)=sec2x
Example 15

y = x tan ? 2 x y=x\tan2x y=xtan2x
= x × 2 sec ? 2 2 x + tan ? 2 x =x\times2\sec^{2}2x+\tan2x =x×2sec22x+tan2x = 2 x sec ? 2 2 x + tan ? 2 x =2x\sec^{2}2x+\tan2x =2xsec22x+tan2x

y = tan ? 4 x = ( tan ? x ) 4 y=\tan^4x=(\tan x)^4 y=tan4x=(tanx)4
d y d x = 4 ( tan ? x ) 3 ( sec ? 2 x ) \frac{dy}{dx}=4(\tan x)^{3}(\sec^{2}x) dxdy?=4(tanx)3(sec2x)
= 4 tan ? 3 x sec ? 2 x =4\tan^{3}x\sec^{2}x =4tan3xsec2x

Prior Knowledge(预备知识温习)

1 c o s e c x = 1 s i n x ( 三角形六边形法则 ) \frac{1}{cosecx}=\frac{1}{sinx}(三角形六边形 法则) cosecx1?=sinx1?(三角形六边形法则)
( u v ) ′ = u ′ v ? v ′ u v 2 (\frac{u}{v})'=\frac{u'v-v'u}{v^2} (vu?)=v2uv?vu?

Example 16
y = c o s e c ? x = 1 sin ? x L e t ? u = 1 ? a n d ? v = sin ? x d u d x = 0 ? a n d ? d v d x = cos ? x \begin{aligned}y&=\mathrm{cosec~}x=\frac1{\sin x}\\\mathrm{Let~}u&=1\mathrm{~and~}v=\sin x\\\frac{du}{dx}&=0\mathrm{~and~}\frac{dv}{dx}=\cos x\end{aligned} yLet?udxdu??=cosec?x=sinx1?=1?and?v=sinx=0?and?dxdv?=cosx?

d y d x = v d u d x ? u d v d x v 2 = sin ? x × 0 ? 1 × cos ? x sin ? 2 x = ? cos ? x sin ? 2 x = ? 1 sin ? x × cos ? x sin ? x = ? cosec ? x cot ? x \begin{aligned} \frac{dy}{dx}& =\frac{v\frac{du}{dx}-u\frac{dv}{dx}}{v^2} \\ &=\frac{\sin x\times0-1\times\cos x}{\sin^2x} \\ &=-\frac{\cos x}{\sin^2x} \\ &=-\frac1{\sin x}\times\frac{\cos x}{\sin x}=-\cosec x\cot x \end{aligned} dxdy??=v2vdxdu??udxdv??=sin2xsinx×0?1×cosx?=?sin2xcosx?=?sinx1?×sinxcosx?=?cosecxcotx?

文章来源:https://blog.csdn.net/appleyuchi/article/details/135511202
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。