CloudCompare——拟合空间球

发布时间:2024年01月10日

在这里插入图片描述

本文由CSDN点云侠原创,CloudCompare——拟合空间球,爬虫自重。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫与GPT生成的文章。

1.拟合球

??源码里用到了四点定球,具体计算原理如下

??已知空间内不共面的四个点,设其坐标为 A ( x 1 , y 1 , z 1 ) A(x_1,y_1,z_1) A(x1?,y1?,z1?) B ( x 2 , y 2 , z 2 ) B(x_2,y_2,z_2) B(x2?,y2?,z2?) C ( x 3 , y 3 , z 3 ) 、 D ( x 4 , y 4 , z 4 ) C(x_3,y_3,z_3)、D(x_4,y_4,z_4) C(x3?,y3?,z3?)D(x4?,y4?,z4?),设半径为 r r r,球心 O O O坐标为 ( x , y , z ) (x,y,z) (x,y,z)。利用四点到球心距离相等的性质得到如下四个方程。
( x ? x 1 ) 2 + ( y ? y 1 ) 2 + ( z ? z 1 ) 2 = r 2 ; ( x ? x 2 ) 2 + ( y ? y 2 ) 2 + ( z ? z 2 ) 2 = r 2 ; ( x ? x 3 ) 2 + ( y ? y 3 ) 2 + ( z ? z 3 ) 2 = r 2 ; ( x ? x 4 ) 2 + ( y ? y 4 ) 2 + ( z ? z 4 ) 2 = r 2 ; (x-x_1)^2 + (y-y_1)^2 +(z-z_1)^2 =r^2;\\ (x-x_2)^2 + (y-y_2)^2 +(z-z_2)^2 =r^2;\\ (x-x_3)^2 + (y-y_3)^2 +(z-z_3)^2 =r^2;\\ (x-x_4)^2 + (y-y_4)^2 +(z-z_4)^2 =r^2; (x?x1?)2+(y?y1?)2+(z?z1?)2=r2;(x?x2?)2+(y?y2?)2+(z?z2?)2=r2;(x?x3?)2+(y?y3?)2+(z?z3?)2=r2;(x?x4?)2+(y?y4?)2+(z?z4?)2=r2;

展开得:
x 2 + y 2 + z 2 ? 2 ( x 1 x + y 1 y + z 1 z ) + x 1 2 + y 1 2 + z 1 2 = r 2 ① x 2 + y 2 + z 2 ? 2 ( x 2 x + y 2 y + z 2 z ) + x 2 2 + y 2 2 + z 2 2 = r 2 ② x 2 + y 2 + z 2 ? 2 ( x 3 x + y 3 y + z 3 z ) + x 3 2 + y 3 2 + z 3 2 = r 2 ③ x 2 + y 2 + z 2 ? 2 ( x 4 x + y 4 y + z 4 z ) + x 4 2 + y 4 2 + z 4 2 = r 2 ④ x^2 + y^2 + z^2- 2(x_1x+y_1y+z_1z)+x_1^2+y_1^2 + z_1^2 = r^2 ①\\ x^2 + y^2 + z^2- 2(x_2x+y_2y+z_2z)+x_2^2+y_2^2 + z_2^2 = r^2②\\ x^2 + y^2 + z^2- 2(x_3x+y_3y+z_3z)+x_3^2+y_3^2 + z_3^2 = r^2③\\ x^2 + y^2 + z^2- 2(x_4x+y_4y+z_4z)+x_4^2+y_4^2 + z_4^2 = r^2④ x2+y2+z2?2(x1?x+y1?y+z1?z)+x12?+y12?+z12?=r2x2+y2+z2?2(x2?x+y2?y+z2?z)+x22?+y22?+z22?=r2x2+y2+z2?2(x3?x+y3?y+z3?z)+x32?+y32?+z32?=r2x2+y2+z2?2(x4?x+y4?y+z4?z)+x42?+y42?+z42?=r2

分别作①-②、③ - ④、② - ③得:
( x 1 ? x 2 ) x + ( y 1 ? y 2 ) y + ( z 1 ? z 2 ) z = 1 / 2 ( x 1 2 ? x 2 2 + y 1 2 ? y 2 2 + z 1 2 ? z 2 2 ) ( x 3 ? x 4 ) x + ( y 3 ? y 4 ) y + ( z 3 ? z 4 ) z = 1 / 2 ( x 3 2 ? x 4 2 + y 3 2 ? y 4 2 + z 3 2 ? z 4 2 ) ( x 2 ? x 3 ) x + ( y 2 ? y 3 ) y + ( z 2 ? z 3 ) z = 1 / 2 ( x 2 2 ? x 3 2 + y 2 2 ? y 3 2 + z 2 2 ? z 3 2 ) (x_1-x_2)x+(y_1-y_2)y+(z_1-z_2)z=1/2(x_1^2 -x_2^2 + y_1^2 -y_2^2 + z_1^2 -z_2^2 )\\ (x_3-x_4)x+(y_3-y_4)y+(z_3-z_4)z=1/2(x_3^2 -x_4^2 + y_3^2 -y_4^2 + z_3^2 -z_4^2 )\\ (x_2-x_3)x+(y_2-y_3)y+(z_2-z_3)z=1/2(x_2^2 -x_3^2 + y_2^2 -y_3^2 + z_2^2 -z_3^2 )\\ (x1??x2?)x+(y1??y2?)y+(z1??z2?)z=1/2(x12??x22?+y12??y22?+z12??z22?)(x3??x4?)x+(y3??y4?)y+(z3??z4?)z=1/2(x32??x42?+y32??y42?+z32??z42?)(x2??x3?)x+(y2??y3?)y+(z2??z3?)z=1/2(x22??x32?+y22??y32?+z22??z32?)

其对应的系数行列式可设为:

D = ∣ a b c a 1 b 1 c 1 a 2 b 2 c 2 ∣ D=\left| \begin{matrix} a & b & c\\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{matrix} \right| D= ?aa1?a2??bb1?b2??cc1?c2?? ?

则: a = ( x 1 ? x 2 ) , b = ( y 1 ? y 2 ) , c = ( z 1 ? z 2 ) , a 1 = ( x 3 ? x 4 ) , b 1 = ( y 3 ? y 4 ) , c 1 = ( z 3 ? z 4 ) , a 2 = ( x 2 ? x 3 ) , b 2 = ( y 2 ? y 3 ) , c 2 = ( z 2 ? z 3 ) a=(x_1-x_2),b=(y_1-y_2),c=(z_1-z_2),\\a_1=(x_3-x_4),b_1=(y_3-y_4),c_1=(z_3-z_4),\\ a_2=(x_2-x_3),b_2=(y_2-y_3),c_2=(z_2-z_3) a=(x1??x2?),b=(y1??y2?),c=(z1??z2?),a1?=(x3??x4?),b1?=(y3??y4?)c1?=(z3??z4?),a2?=(x2??x3?),b2?=(y2??y3?)c2?=(z2??z3?)

常数项行列式为:

L = ∣ P Q R ∣ L=\left| \begin{matrix} P\\ Q \\ R \end{matrix} \right| L= ?PQR? ?

则:
P = 1 2 ( x 1 2 ? x 2 2 + y 1 2 ? y 2 2 + z 1 2 ? z 2 2 ) P=\frac{1}{2}(x_1^2 -x_2^2 + y_1^2 -y_2^2 + z_1^2 - z_2^2 ) P=21?(x12??x22?+y12??y22?+z12??z22?)
Q = 1 2 ( x 3 2 ? x 4 2 + y 3 2 ? y 4 2 + z 3 2 ? z 4 2 ) Q=\frac{1}{2}(x_3^2 -x_4^2 + y_3^2 -y_4^2 + z_3^2 - z_4^2 ) Q=21?(x32??x42?+y32??y42?+z32??z42?)
R = 1 2 ( x 2 2 ? x 3 2 + y 2 2 ? y 3 2 + z 2 2 ? z 3 2 ) R=\frac{1}{2}(x_2^2 -x_3^2 + y_2^2 -y_3^2 + z_2^2 - z_3^2 ) R=21?(x22??x32?+y22??y32?+z22??z32?)

现设:
D x = ∣ P b c Q b 1 c 1 R b 2 c 2 ∣ Dx=\left| \begin{matrix} P & b & c\\ Q & b_1 & c_1 \\ R & b_2 & c_2 \end{matrix} \right| Dx= ?PQR?bb1?b2??cc1?c2?? ?

D y = ∣ a P c a 1 Q c 1 a 2 R c 2 ∣ Dy=\left| \begin{matrix} a & P & c\\ a_1 & Q & c_1 \\ a_2 &R & c_2 \end{matrix} \right| Dy= ?aa1?a2??PQR?cc1?c2?? ?

D z = ∣ a b P a 1 b 1 Q a 2 b 2 R ∣ Dz=\left| \begin{matrix} a & b & P\\ a_1 & b_1 & Q \\ a_2 &b_2 & R \end{matrix} \right| Dz= ?aa1?a2??bb1?b2??PQR? ?

由线性代数中的克拉默法则可知:
x = D x D x=\frac{Dx}{D} x=DDx?

y = D y D y=\frac{Dy}{D} y=DDy?

z = D z D z=\frac{Dz}{D} z=DDz?

2.软件操作

??通过菜单栏的'Tools > Fit > Sphere'找到该功能。
在这里插入图片描述

??选择一个或多个点云,然后启动此工具。CloudCompare将在每个点云上拟合球体基元。在控制台中,将输出以下信息:

  • center(也可以在球体实体属性中找到球体边界框的中心)
  • radius(也可以在sphere实体属性中找到)
  • 球体拟合RMS(在默认球体实体名称中调用)注意:理论上球体拟合算法可以处理高达50%的异常值。

球形点云
在这里插入图片描述
拟合结果
在这里插入图片描述
控制台输出
在这里插入图片描述

3.算法源码

GeometricalAnalysisTools::ErrorCode GeometricalAnalysisTools::DetectSphereRobust(
	GenericIndexedCloudPersist* cloud,
	double outliersRatio,
	CCVector3& center,
	PointCoordinateType& radius,
	double& rms,
	GenericProgressCallback* progressCb/*=nullptr*/,
	double confidence/*=0.99*/,
	unsigned seed/*=0*/)
{
	if (!cloud)
	{
		assert(false);
		return InvalidInput;
	}

	unsigned n = cloud->size();
	if (n < 4)
		return NotEnoughPoints;

	assert(confidence < 1.0);
	confidence = std::min(confidence, 1.0 - FLT_EPSILON);

	//we'll need an array (sorted) to compute the medians
	std::vector<PointCoordinateType> values;
	try
	{
		values.resize(n);
	}
	catch (const std::bad_alloc&)
	{
		//not enough memory
		return NotEnoughMemory;
	}

	//number of samples
	unsigned m = 1;
	const unsigned p = 4;
	if (n > p)
	{
		m = static_cast<unsigned>(log(1.0 - confidence) / log(1.0 - pow(1.0 - outliersRatio, static_cast<double>(p))));
	}

	//for progress notification
	NormalizedProgress nProgress(progressCb, m);
	if (progressCb)
	{
		if (progressCb->textCanBeEdited())
		{
			char buffer[64];
			sprintf(buffer, "Least Median of Squares samples: %u", m);
			progressCb->setInfo(buffer);
			progressCb->setMethodTitle("Detect sphere");
		}
		progressCb->update(0);
		progressCb->start();
	}

	//now we are going to randomly extract a subset of 4 points and test the resulting sphere each time
	if (seed == 0)
	{
		std::random_device randomGenerator;   // non-deterministic generator
		seed = randomGenerator();
	}
	std::mt19937 gen(seed);  // to seed mersenne twister.
	std::uniform_int_distribution<unsigned> dist(0, n - 1);
	unsigned sampleCount = 0;
	unsigned attempts = 0;
	double minError = -1.0;
	std::vector<unsigned> indexes;
	indexes.resize(p);
	while (sampleCount < m && attempts < 2*m)
	{
		//get 4 random (different) indexes
		for (unsigned j = 0; j < p; ++j)
		{
			bool isOK = false;
			while (!isOK)
			{
				indexes[j] = dist(gen);
				isOK = true;
				for (unsigned k = 0; k < j && isOK; ++k)
					if (indexes[j] == indexes[k])
						isOK = false;
			}
		}

		assert(p == 4);
		const CCVector3* A = cloud->getPoint(indexes[0]);
		const CCVector3* B = cloud->getPoint(indexes[1]);
		const CCVector3* C = cloud->getPoint(indexes[2]);
		const CCVector3* D = cloud->getPoint(indexes[3]);

		++attempts;
		CCVector3 thisCenter;
		PointCoordinateType thisRadius;
		if (ComputeSphereFrom4(*A, *B, *C, *D, thisCenter, thisRadius) != NoError)
			continue;

		//compute residuals
		for (unsigned i = 0; i < n; ++i)
		{
			PointCoordinateType error = (*cloud->getPoint(i) - thisCenter).norm() - thisRadius;
			values[i] = error*error;
		}
		
		const unsigned int	medianIndex = n / 2;

		std::nth_element(values.begin(), values.begin() + medianIndex, values.end());

		//the error is the median of the squared residuals
		double error = static_cast<double>(values[medianIndex]);

		//we keep track of the solution with the least error
		if (error < minError || minError < 0.0)
		{
			minError = error;
			center = thisCenter;
			radius = thisRadius;
		}

		++sampleCount;

		if (progressCb && !nProgress.oneStep())
		{
			//progress canceled by the user
			return ProcessCancelledByUser;
		}
	}

	//too many failures?!
	if (sampleCount < m)
	{
		return ProcessFailed;
	}

	//last step: robust estimation
	ReferenceCloud candidates(cloud);
	if (n > p)
	{
		//e robust standard deviation estimate (see Zhang's report)
		double sigma = 1.4826 * (1.0 + 5.0 /(n-p)) * sqrt(minError);

		//compute the least-squares best-fitting sphere with the points
		//having residuals below 2.5 sigma
		double maxResidual = 2.5 * sigma;
		if (candidates.reserve(n))
		{
			//compute residuals and select the points
			for (unsigned i = 0; i < n; ++i)
			{
				PointCoordinateType error = (*cloud->getPoint(i) - center).norm() - radius;
				if (error < maxResidual)
					candidates.addPointIndex(i);
			}
			candidates.resize(candidates.size());

			//eventually estimate the robust sphere parameters with least squares (iterative)
			if (RefineSphereLS(&candidates, center, radius))
			{
				//replace input cloud by this subset!
				cloud = &candidates;
				n = cloud->size();
			}
		}
		else
		{
			//not enough memory!
			//we'll keep the rough estimate...
		}
	}

	//update residuals
	{
		double residuals = 0;
		for (unsigned i = 0; i < n; ++i)
		{
			const CCVector3* P = cloud->getPoint(i);
			double e = (*P - center).norm() - radius;
			residuals += e*e;
		}
		rms = sqrt(residuals/n);
	}

	return NoError;
}

4.相关代码

[1]C++实现:PCL RANSAC拟合空间3D球体
[2]python实现:Open3D——RANSAC三维点云球面拟合
[3] Open3D 最小二乘拟合球
[4] Open3D 非线性最小二乘拟合球

文章来源:https://blog.csdn.net/qq_36686437/article/details/135489350
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。