面试算法98:路径的数目

发布时间:2024年01月05日

题目

一个机器人从m×n的格子的左上角出发,它每步要么向下要么向右,直到抵达格子的右下角。请计算机器人从左上角到达右下角的路径的数目。例如,如果格子的大小是3×3,那么机器人从左上角到达右下角有6条符合条件的不同路径。
在这里插入图片描述

分析

应用动态规划解决问题的关键在于找出状态转移方程。可以用函数f(i,j)表示从格子的左上角坐标为(0,0)的位置出发到达坐标为(i,j)的位置的路径的数目。如果格子的大小为m×n,那么f(m-1,n-1)就是问题的解。
当i等于0时,机器人位于格子最上面的一行,机器人不可能从某个位置向下走一步到达一个行号i等于0的位置。因此,f(0,j)等于1,即机器人只有一种方法可以到达坐标为(0,j)的位置,即从(0,j-1)的位置向右走一步。当j等于0时,机器人位于格子最左边的一列,机器人不可能从某个位置向右走一步到达一个列号j为0的位置。因此,f(i,0)等于1,即机器人只有一种方法可以到达坐标为(i,0)的位置,即从(i-1,0)的位置向下走一步。
当行号i、列号j都大于0时,机器人有两种方法可以到达坐标为(i,j)的位置。它既可以从坐标为(i-1,j)的位置向下走一步,也可以从坐标为(i,j-1)的位置向右走一步,因此,f(i,j)等于f(i-1,j)与f(i,j-1)之和。

解:递归

public class Test {
    public static void main(String[] args) {
        int result = uniquePaths(3, 3);
        System.out.println(result);

    }

    public static int uniquePaths(int m, int n) {
        int[][] dp = new int[m][n];
        return helper(m - 1, n - 1, dp);
    }

    private static int helper(int i, int j, int[][] dp) {
        if (dp[i][j] == 0) {
            if (i == 0 || j == 0) {
                dp[i][j] = 1;
            }
            else {
                dp[i][j] = helper(i - 1, j, dp) + helper(i, j - 1, dp);
            }
        }

        return dp[i][j];
    }
}

解:迭代

public class Test {
    public static void main(String[] args) {
        int result = uniquePaths(3, 3);
        System.out.println(result);

    }

    public static int uniquePaths(int m, int n) {
        int[][] dp = new int[m][n];
        Arrays.fill(dp[0], 1);
        for (int i = 1; i < m; i++) {
            dp[i][0] = 1;
        }

        for (int i = 1; i < m; i++) {
            for (int j = 1; j < n; j++) {
                dp[i][j] = dp[i][j - 1] + dp[i - 1][j];
            }
        }

        return dp[m - 1][n - 1];
    }
}
文章来源:https://blog.csdn.net/GoGleTech/article/details/135416086
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。