343. 整数拆分(动态规划)

发布时间:2024年01月15日

题目:

给定一个正整数 n ,将其拆分为 k 个 正整数 的和( k >= 2 ),并使这些整数的乘积最大化。

返回 你可以获得的最大乘积 。

示例 1:

输入: n = 2
输出: 1
解释: 2 = 1 + 1, 1 × 1 = 1。
示例 2:

输入: n = 10
输出: 36
解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36。

提示:

2 <= n <= 58

思路:

本题比之前面的动态规划还要难理解点,理解难度主要在动态规划递推公式的推导上和dp数组的含义理解上。本题我也是根据题解分析才理解的,写本篇博客也能更加加深自己的理解。

动规五部曲:

  1. 确定dp数组(dp table)以及下标的含义

dp[i]:分拆数字i,可以得到的最大乘积为dp[i]。

dp[i]的定义将贯彻整个解题过程,下面哪一步想不懂了,就想想dp[i]究竟表示的是啥!dp[n]就是最终题解答案。

  1. 确定递推公式

可以想 dp[i]最大乘积是怎么得到的呢?

其实可以从1遍历j,然后有两种渠道得到dp[i].

一个是j * (i - j) 直接相乘。

一个是j * dp[i - j],相当于是拆分(i - j),对这个拆分不理解的话,可以回想dp数组的定义。

j怎么就不拆分呢?

j是从1开始遍历,拆分j的情况,在遍历j的过程中其实都计算过了。那么从1遍历j,比较(i - j) * j和dp[i - j] * j 取最大的。递推公式:dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));

也可以这么理解,j * (i - j) 是单纯的把整数拆分为两个数相乘,而j * dp[i - j]是拆分成两个以及两个以上的个数相乘。

如果定义dp[i - j] * dp[j] 也是默认将一个数强制拆成4份以及4份以上了。

所以递推公式dp[i] = max({dp[i], (i - j) * j, dp[i - j] * j});

那么在取最大值的时候,为什么还要比较dp[i]呢?

因为在递推公式推导的过程中,每次计算dp[i],取最大的而已。

每一趟循环中都会计算出dp[i]的数值然后用前面计算好的dp[i](如:dp[3],dp[4])来计算的之后的dp数组,这么说可能比较抽象,可以根据代码在纸上写下每次计算的过程和结果就好理解了。

  1. dp的初始化

rendp[0] dp[1]应该初始化多少呢?

严格从dp[i]的定义来说,dp[0] dp[1] 就不应该初始化,也就是没有意义的数值。

拆分0和拆分1的最大乘积是多少?

这是无解的。

这里只初始化dp[2] = 1,从dp[i]的定义来说,拆分数字2,得到的最大乘积是1

  1. 确定遍历顺序

毋庸置疑,遍历顺序肯定从前往后遍历,先来看看递归公式:dp[i] = max(dp[i], (i - j) * j, dp[i - j] * j); dp[i] 是依靠 dp[i - j]的状态,所以遍历i一定是从前向后遍历,先有dp[i - j]再有dp[i]。

        for i in range(3, n + 1):
            for j in range(1, i - 1):
                dp[i] = max(dp[i], dp[i - j] * j, j * (i - j))

注意 枚举j的时候,是从1开始的。从0开始的话,那么让拆分一个数拆个0,求最大乘积就没有意义了。

j的结束条件是 j < i - 1 ,其实 j < i 也是可以的,不过可以节省一步,例如让j = i - 1,的话,其实在 j = 1的时候,这一步就已经拆出来了,重复计算,所以 j < i - 1

至于 i是从3开始,这样dp[i - j]就是dp[2]正好可以通过我们初始化的数值求出来。

更优化一步,可以这样:

        for i in range(3, n + 1):
            for j in range(1, i - 1):
                dp[i] = max(dp[i], dp[i - j] * j, j * (i - j))

因为拆分一个数n 使之乘积最大,那么一定是拆分成m个近似相同的子数相乘才是最大的。

例如 6 拆成 3 * 3, 10 拆成 3 * 3 * 4。 100的话 也是拆成m个近似数组的子数 相乘才是最大的。

只不过我们不知道m究竟是多少而已,但可以明确的是m一定大于等于2,既然m大于等于2,也就是 最差也应该是拆成两个相同的 可能是最大值。

那么 j 遍历,只需要遍历到 n/2 就可以,后面就没有必要遍历了,一定不是最大值。

  1. 举例推导dp数组

举例当n为10 的时候,dp数组里的数值,如下:
在这里插入图片描述

代码及详细注释:

class Solution:
    def integerBreak(self, n: int) -> int:
        # 创建一个长度为 n+1 的数组,用于存储最大乘积结果
        dp = [0] * (n + 1)
        dp[2] = 1  # 当 n=2 时,最大乘积为 1

        # 遍历从 3 到 n 的每个数字
        for i in range(3, n + 1):
            # 遍历从 1 到 i-1 的每个数字
            for j in range(1, i - 1):
                # 计算当前数字 i 的最大乘积
                dp[i] = max(dp[i], dp[i - j] * j, j * (i - j))
        # 返回数字 n 的最大乘积
        return dp[n]

  • 时间复杂度:O(n^2)
  • 空间复杂度:O(n)
文章来源:https://blog.csdn.net/2301_77160836/article/details/135589882
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。