【原创】CPO-VMD【24年新算法】
冠豪猪优化算法(CPO)优化VMD变分模态分解
实现平台:Matlab,中文注释清晰,非常适合科研小白。
冠豪猪优化器(Crested Porcupine Optimizer,CPO)于2024年1月发表在中科院1区SCI期刊Knowledge-Based Systems上。目前没人用,非常适合作为创新![闪亮]你就是第一个使用!
模型运行步骤:
1.利用冠豪猪优化算法优化VMD中的参数k、a,适应度函数为包络熵。分解效果好,包含分解效果图、频率图、收敛曲线等图等。
2.冠豪猪优化算法CPO是24年最新提出的新算法,没人用过。适合作为创新点。
3.附赠测试数据 直接运行main即可一键出图
[x, y] = size(signal);
if x > y
C = y;% number of channels
T = x;% length of the Signal
signal = signal';
else
C = x;% number of channels
T = y;% length of the Signal
end
%---------- Preparations
% Sampling Frequency
fs = 1/T;
% Mirroring
f(:,1:T/2) = signal(:,T/2:-1:1);
f(:,T/2+1:3*T/2) = signal;
f(:,3*T/2+1:2*T) = signal(:,T:-1:T/2+1);
% Time Domain 0 to T (of mirrored signal)
T = size(f,2);
t = (1:T)/T;
% frequencies
freqs = t-0.5-1/T;
% Construct and center f_hat
f_hat = fftshift(fft(f,[],2),2);
f_hat_plus = f_hat;
f_hat_plus(:,1:T/2) = 0;
%------------ Initialization
% Maximum number of iterations
N = 500;
% For future generalizations: individual alpha for each mode
Alpha = alpha*ones(1,K);
% matrix keeping track of every iterant
u_hat_plus_00 = zeros(length(freqs), C, K);
u_hat_plus = zeros(length(freqs), C, K);
omega_plus = zeros(N, K);
% initialize omegas uniformly
switch init
case 1
omega_plus(1,:) = (0.5/K)*((1:K)-1);
case 2
omega_plus(1,:) = sort(exp(log(fs) + (log(0.5)-log(fs))*rand(1,K)));
otherwise
omega_plus(1,:) = 0;
end
[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718